Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral and express your answer in simplest form.

int(-2)/(sqrt(1-25x^(2)))dx
Answer:

Evaluate the integral and express your answer in simplest form.\newline2125x2dx \int \frac{-2}{\sqrt{1-25 x^{2}}} d x \newlineAnswer:

Full solution

Q. Evaluate the integral and express your answer in simplest form.\newline2125x2dx \int \frac{-2}{\sqrt{1-25 x^{2}}} d x \newlineAnswer:
  1. Recognize Integral Form: We are given the integral: \newline2125x2dx\int \frac{-2}{\sqrt{1-25x^{2}}}dx\newlineTo solve this integral, we recognize that it resembles the derivative of the arcsine function, where the integral of 11u2du\frac{1}{\sqrt{1-u^2}}du is arcsin(u)+C\text{arcsin}(u) + C. We will use a substitution to transform the integral into this form.\newlineLet u=5xu = 5x, then dudx=5\frac{du}{dx} = 5 and dx=du5dx = \frac{du}{5}.
  2. Perform Substitution: Substitute u=5xu = 5x and dx=du5dx = \frac{du}{5} into the integral:\newline2125x2dx=21u2(du5)\int \frac{-2}{\sqrt{1-25x^{2}}}dx = \int \frac{-2}{\sqrt{1-u^2}}\left(\frac{du}{5}\right)\newlineSimplify the integral:\newline=25×11u2du= \frac{-2}{5} \times \int \frac{1}{\sqrt{1-u^2}}du\newlineNow the integral is in the form of the derivative of arcsin(u)\arcsin(u).
  3. Simplify Integral: Evaluate the integral:\newline2511u2du=25arcsin(u)+C-\frac{2}{5} \int \frac{1}{\sqrt{1-u^2}}du = -\frac{2}{5} \arcsin(u) + C\newlineReplace uu with 5x5x to return to the original variable:\newline=25arcsin(5x)+C= -\frac{2}{5} \arcsin(5x) + C\newlineThis is the simplest form of the antiderivative.