Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral and express your answer in simplest form.

int(2)/(sqrt(36-16x^(2)))dx
Answer:

Evaluate the integral and express your answer in simplest form.\newline23616x2dx \int \frac{2}{\sqrt{36-16 x^{2}}} d x \newlineAnswer:

Full solution

Q. Evaluate the integral and express your answer in simplest form.\newline23616x2dx \int \frac{2}{\sqrt{36-16 x^{2}}} d x \newlineAnswer:
  1. Recognize inverse trigonometric function: Recognize the integral as a form of the inverse trigonometric function. The integral resembles the form of the inverse sine function, which has the integral formula 1a2u2du=arcsin(ua)+C\int \frac{1}{\sqrt{a^2 - u^2}}du = \arcsin(\frac{u}{a}) + C, where aa is a constant. In this case, we can try to match the integral to this form by factoring out constants from the square root.
  2. Factor out constant from square root: Factor out the constant from the square root to match the inverse sine integral form.\newline23616x2dx=242(9x2)dx\int\frac{2}{\sqrt{36-16x^{2}}}dx = \int\frac{2}{\sqrt{4^2(9-x^{2})}}dx\newlineNow, factor out the 424^2 from under the square root to get:\newline249x2dx=129x2dx\int\frac{2}{4\sqrt{9-x^{2}}}dx = \int\frac{1}{2\sqrt{9-x^{2}}}dx
  3. Substitute uu to transform integral: Substitute u=x3u = \frac{x}{3} to transform the integral into the standard form.\newlineLet u=x3u = \frac{x}{3}, then du=13dxdu = \frac{1}{3}dx, and dx=3dudx = 3du.\newlineSubstitute x=3ux = 3u into the integral:\newline129(3u)23du=3299u2du\int \frac{1}{2\sqrt{9-(3u)^{2}}} \cdot 3du = \int \frac{3}{2\sqrt{9-9u^{2}}}du\newlineSimplify the integral:\newline329(1u2)du=361u2du\int \frac{3}{2\sqrt{9(1-u^{2})}}du = \int \frac{3}{6\sqrt{1-u^{2}}}du\newline= 121u2du\int \frac{1}{2\sqrt{1-u^{2}}}du
  4. Integrate using inverse sine function: Integrate using the inverse sine function.\newlineThe integral is now in the standard form for the inverse sine function:\newline121u2du=12arcsin(u)+C\int \frac{1}{2\sqrt{1-u^{2}}}du = \frac{1}{2}\arcsin(u) + C
  5. Substitute back original variable: Substitute back the original variable xx into the integral.\newlineSince u=x3u = \frac{x}{3}, we substitute back to get the final answer:\newline12\frac{1}{2}arcsin(x3)\left(\frac{x}{3}\right) + CC