Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral and express your answer in simplest form.

int(4)/(sqrt(1-x^(2)))dx
Answer:

Evaluate the integral and express your answer in simplest form.\newline41x2dx \int \frac{4}{\sqrt{1-x^{2}}} d x \newlineAnswer:

Full solution

Q. Evaluate the integral and express your answer in simplest form.\newline41x2dx \int \frac{4}{\sqrt{1-x^{2}}} d x \newlineAnswer:
  1. Given Integral: We are given the integral:\newline41x2dx\int\frac{4}{\sqrt{1-x^{2}}}dx\newlineThis integral is a standard form that resembles the integral of the derivative of arcsine, which is:\newline11x2dx=arcsin(x)+C\int\frac{1}{\sqrt{1-x^{2}}}dx = \arcsin(x) + C\newlineTo solve the given integral, we can factor out the constant 44 from the integral:\newline41x2dx=4×11x2dx\int\frac{4}{\sqrt{1-x^{2}}}dx = 4 \times \int\frac{1}{\sqrt{1-x^{2}}}dx
  2. Factor Out Constant: Now we can integrate using the standard form:\newline411x2dx=4arcsin(x)+C4 \cdot \int \frac{1}{\sqrt{1-x^{2}}} \, dx = 4 \cdot \arcsin(x) + C\newlinewhere CC is the constant of integration.
  3. Integrate Using Standard Form: Therefore, the integral evaluates to:\newline4arcsin(x)+C4 \cdot \arcsin(x) + C\newlineThis is the simplest form of the answer.