Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral and express your answer in simplest form.

int(-5)/(16+16x^(2))dx
Answer:

Evaluate the integral and express your answer in simplest form.\newline516+16x2dx \int \frac{-5}{16+16 x^{2}} d x \newlineAnswer:

Full solution

Q. Evaluate the integral and express your answer in simplest form.\newline516+16x2dx \int \frac{-5}{16+16 x^{2}} d x \newlineAnswer:
  1. Factor out constant: Simplify the integral by factoring out the constant from the denominator. 516+16x2dx=5/161+x2dx\int\frac{-5}{16+16x^{2}}dx = \int\frac{-5/16}{1+x^{2}}dx
  2. Recognize integral form: Recognize that the integral is now in the form of a constant times the integral of 1/(1+x2)1/(1+x^2), which is the arctangent function.\newline(516)/(1+x2)dx=516×1(1+x2)dx\int\left(-\frac{5}{16}\right)/(1+x^{2})dx = -\frac{5}{16} \times \int\frac{1}{(1+x^{2})}dx
  3. Evaluate integral: Evaluate the integral using the fact that the integral of 11+x2\frac{1}{1+x^2} is arctan(x)\arctan(x).51611+x2dx=516arctan(x)+C\frac{-5}{16} \int \frac{1}{1+x^{2}}\,dx = \frac{-5}{16} \arctan(x) + C