Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral and express your answer in simplest form.

int(-2)/(xsqrt(x^(2)-9))dx
Answer:

Evaluate the integral and express your answer in simplest form.\newline2xx29dx \int \frac{-2}{x \sqrt{x^{2}-9}} d x \newlineAnswer:

Full solution

Q. Evaluate the integral and express your answer in simplest form.\newline2xx29dx \int \frac{-2}{x \sqrt{x^{2}-9}} d x \newlineAnswer:
  1. Identify Substitution: Let's identify a substitution that can simplify the integral. We notice that the denominator has the form of a derivative of a hyperbolic function, specifically the derivative of cosh(x)\cosh(x), which is sinh(x)\sinh(x). If we let x=3cosh(u)x = 3\cosh(u), then dx=3sinh(u)dudx = 3\sinh(u) du, and the integral becomes easier to handle. Let's perform this substitution.
  2. Perform Substitution: Substitute x=3cosh(u)x = 3\cosh(u), which implies dx=3sinh(u)dudx = 3\sinh(u) du. The integral becomes:\newline23cosh(u)9cosh2(u)93sinh(u)du\int\frac{-2}{3\cosh(u)\sqrt{9\cosh^2(u)-9}} \cdot 3\sinh(u) du\newlineSimplify the square root:\newline23cosh(u)9(cosh2(u)1)3sinh(u)du\int\frac{-2}{3\cosh(u)\sqrt{9(\cosh^2(u)-1)}} \cdot 3\sinh(u) du\newlineSince cosh2(u)1=sinh2(u)\cosh^2(u) - 1 = \sinh^2(u), we have:\newline23cosh(u)9sinh2(u)3sinh(u)du\int\frac{-2}{3\cosh(u)\sqrt{9\sinh^2(u)}} \cdot 3\sinh(u) du
  3. Simplify Square Root: Simplify the integral further by canceling terms:\newline23cosh(u)3sinh(u)3sinh(u)du\int\frac{-2}{3\cosh(u)\cdot 3\sinh(u)} \cdot 3\sinh(u) \, du\newlineThe 3sinh(u)3\sinh(u) terms cancel out, leaving us with:\newline23cosh(u)du\int\frac{-2}{3\cosh(u)} \, du
  4. Cancel Terms: Now, the integral simplifies to:\newline(23)(1cosh(u))du\int(-\frac{2}{3}) \cdot (\frac{1}{\cosh(u)}) \, du\newlineRecognize that 1cosh(u)\frac{1}{\cosh(u)} is the hyperbolic secant function, \sech(u):\newline\int(-\frac{2}{3}) \cdot \sech(u) \, du
  5. Recognize Hyperbolic Secant: The integral of sech(u)\text{sech}(u) is a standard result, which is 23lntanh(u2)+C-\frac{2}{3} \ln|\tanh(\frac{u}{2})| + C, where CC is the constant of integration. So we have:\newline23lntanh(u2)+C-\frac{2}{3} \ln|\tanh(\frac{u}{2})| + C
  6. Back-Substitute Variables: Now we need to back-substitute to return to the original variable xx. We have x=3cosh(u)x = 3\cosh(u), so we need to express tanh(u2)\tanh(\frac{u}{2}) in terms of xx. We can use the half-angle formula for hyperbolic tangent:\newlinetanh(u2)=cosh(u)1sinh(u)\tanh(\frac{u}{2}) = \frac{\cosh(u) - 1}{\sinh(u)}\newlineSince x=3cosh(u)x = 3\cosh(u), we have cosh(u)=x3\cosh(u) = \frac{x}{3} and sinh(u)=x293\sinh(u) = \frac{\sqrt{x^2 - 9}}{3}. Substituting these into the half-angle formula gives us:\newlinetanh(u2)=(x3)1x293\tanh(\frac{u}{2}) = \frac{(\frac{x}{3}) - 1}{\frac{\sqrt{x^2 - 9}}{3}}
  7. Substitute Back into Integral: Substitute tanh(u2)\tanh(\frac{u}{2}) back into the integral result:\newline23ln(x3)1x293+C-\frac{2}{3} \cdot \ln\left|\frac{(\frac{x}{3}) - 1}{\frac{\sqrt{x^2 - 9}}{3}}\right| + C\newlineSimplify the expression:\newline23lnx3x29+C-\frac{2}{3} \cdot \ln\left|\frac{x - 3}{\sqrt{x^2 - 9}}\right| + C
  8. Simplify Expression: The final answer in simplest form is: 23ln(x3)x29+C-\frac{2}{3} \ln\left|\frac{(x - 3)}{\sqrt{x^2 - 9}}\right| + C