Q. Evaluate the integral and express your answer in simplest form.∫1+16x2−10dxAnswer:
Recognize standard form: Recognize the integral as a standard form. The integral ∫1+16x2−10dx resembles the standard form of the integral for arctangent, ∫a2+x21dx=a1arctan(ax)+C, where a is a constant.
Factor out constant: Factor out the constant from the integral.Factor out the constant −10 from the integral to simplify the expression.∫1+16x2−10dx=−10×∫1+16x21dx
Identify 'a': Identify the value of 'a' in the standard form.In the standard form (1/a)arctan(x/a)+C, we need to match the denominator 1+16x2 with a2+x2. Here, a2=1/16, so a=1/4.
Apply arctangent integral: Apply the standard form of the arctangent integral.Using the standard form, we can rewrite the integral as:\(-10 \times \int \frac{1}{1+16x^{2}}\,dx = −10 \times \left(\frac{1}{4}\right)\arctan\left(\frac{x}{1/4}\right) + C
Simplify expression: Simplify the expression.Simplify the expression by multiplying the constants.\(-10 \times \left(\frac{1}{4}\right)\arctan\left(\frac{x}{\frac{1}{4}}\right) + C = \left(-\frac{10}{4}\right)\arctan(4x) + C = −2.5\arctan(4x) + C
More problems from Find indefinite integrals using the substitution