Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral and express your answer in simplest form.

int(-10)/(1+16x^(2))dx
Answer:

Evaluate the integral and express your answer in simplest form.\newline101+16x2dx \int \frac{-10}{1+16 x^{2}} d x \newlineAnswer:

Full solution

Q. Evaluate the integral and express your answer in simplest form.\newline101+16x2dx \int \frac{-10}{1+16 x^{2}} d x \newlineAnswer:
  1. Recognize standard form: Recognize the integral as a standard form. The integral 101+16x2dx\int \frac{-10}{1+16x^{2}}\,dx resembles the standard form of the integral for arctangent, 1a2+x2dx=1aarctan(xa)+C\int \frac{1}{a^{2} + x^{2}}\,dx = \frac{1}{a}\arctan\left(\frac{x}{a}\right) + C, where aa is a constant.
  2. Factor out constant: Factor out the constant from the integral.\newlineFactor out the constant 10-10 from the integral to simplify the expression.\newline101+16x2dx=10×11+16x2dx\int\frac{-10}{1+16x^{2}}dx = -10 \times \int\frac{1}{1+16x^{2}}dx
  3. Identify 'a': Identify the value of 'a' in the standard form.\newlineIn the standard form (1/a)arctan(x/a)+C(1/a)\arctan(x/a) + C, we need to match the denominator 1+16x21+16x^2 with a2+x2a^2+x^2. Here, a2=1/16a^2 = 1/16, so a=1/4a = 1/4.
  4. Apply arctangent integral: Apply the standard form of the arctangent integral.\newlineUsing the standard form, we can rewrite the integral as:\newline\(-10 \times \int \frac{11}{11+1616x^{22}}\,dx = 10-10 \times \left(\frac{11}{44}\right)\arctan\left(\frac{x}{11/44}\right) + C
  5. Simplify expression: Simplify the expression.\newlineSimplify the expression by multiplying the constants.\newline\(-10 \times \left(\frac{11}{44}\right)\arctan\left(\frac{x}{\frac{11}{44}}\right) + C = \left(-\frac{1010}{44}\right)\arctan(44x) + C = 2-2.55\arctan(44x) + C