Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral and express your answer in simplest form.

int(-7)/(sqrt(16-4x^(2)))dx
Answer:

Evaluate the integral and express your answer in simplest form.\newline7164x2dx \int \frac{-7}{\sqrt{16-4 x^{2}}} d x \newlineAnswer:

Full solution

Q. Evaluate the integral and express your answer in simplest form.\newline7164x2dx \int \frac{-7}{\sqrt{16-4 x^{2}}} d x \newlineAnswer:
  1. Choose Trig Substitution: We are given the integral: \newline7164x2dx\int \frac{-7}{\sqrt{16-4x^{2}}}dx\newlineTo solve this integral, we can use a trigonometric substitution. Let's choose x=2sin(θ)x = 2\sin(\theta), because the expression under the square root resembles the Pythagorean identity 1sin2(θ)=cos2(θ)1 - \sin^{2}(\theta) = \cos^{2}(\theta).
  2. Find dxdx: Differentiate x=2sin(θ)x = 2\sin(\theta) with respect to θ\theta to find dxdx:dxdθ=2cos(θ)\frac{dx}{d\theta} = 2\cos(\theta)dx=2cos(θ)dθdx = 2\cos(\theta)d\theta
  3. Substitute xx and dxdx: Substitute x=2sin(θ)x = 2\sin(\theta) and dx=2cos(θ)dθdx = 2\cos(\theta)d\theta into the integral:\newline7164(2sin(θ))22cos(θ)dθ\int\frac{-7}{\sqrt{16-4(2\sin(\theta))^2}} \cdot 2\cos(\theta)d\theta\newlineSimplify the expression under the square root:\newline71616sin2(θ)2cos(θ)dθ\int\frac{-7}{\sqrt{16-16\sin^2(\theta)}} \cdot 2\cos(\theta)d\theta
  4. Simplify Expression: Recognize that 16sin2(θ)16\sin^2(\theta) is a multiple of the Pythagorean identity, so we can simplify further:\newline716(1sin2(θ))2cos(θ)dθ\int\frac{-7}{\sqrt{16(1-\sin^2(\theta))}} \cdot 2\cos(\theta)d\theta\newlineSimplify the square root using the identity 1sin2(θ)=cos2(θ)1 - \sin^2(\theta) = \cos^2(\theta):\newline74cos(θ)2cos(θ)dθ\int\frac{-7}{4\cos(\theta)} \cdot 2\cos(\theta)d\theta
  5. Cancel Cos Terms: Cancel out the cos(θ)\cos(\theta) terms:\newline74cos(θ)2cos(θ)dθ=742dθ\int\frac{-7}{4\cos(\theta)} \cdot 2\cos(\theta)d\theta = \int\frac{-7}{4} \cdot 2d\theta\newlineSimplify the constant factors:\newline72dθ\int\frac{-7}{2}d\theta
  6. Integrate with Respect: Integrate with respect to theta: (72)dθ=(72)θ+C(-\frac{7}{2}) \int d\theta = (-\frac{7}{2}) \theta + C
  7. Express Θ\Theta in xx: Now we need to express θ\theta in terms of xx. Since x=2sin(θ)x = 2\sin(\theta), we can write sin(θ)=x2\sin(\theta) = \frac{x}{2}. To find θ\theta, we take the inverse sine (arcsin) of both sides:\newlineθ=arcsin(x2)\theta = \arcsin\left(\frac{x}{2}\right)\newlineSubstitute θ\theta back into the integral result:\newline\(\left(-\frac{\(7\)}{\(2\)}\right) * \theta + C = \left(-\frac{\(7\)}{\(2\)}\right) * \arcsin\left(\frac{x}{\(2\)}\right) + C