Q. Evaluate the integral and express your answer in simplest form.∫16+x2−10dxAnswer:
Recognize Standard Form: We are given the integral: ∫16+x2−10dxTo solve this integral, we can recognize that it is a standard form of the arctangent function, where the integral of a2+x21dx is a1arctanax + C, where C is the constant of integration.Let's identify a2=16, which gives us a=4.
Identify Constant: Now we can rewrite the integral by factoring out the constant −10 and substituting a=4: ∫16+x2−10dx=−10×∫16+x21dx=−10×∫42+x21dx
Rewrite Integral: Next, we apply the arctangent formula:\(-10 \times \int \frac{1}{4^2+x^{2}}dx = −10 \times \left(\frac{1}{4}\right)\arctan\left(\frac{x}{4}\right) + C= \left(-\frac{10}{4}\right) \times \arctan\left(\frac{x}{4}\right) + C= -\frac{5}{2} \times \arctan\left(\frac{x}{4}\right) + C
Apply Arctangent Formula: We have found the indefinite integral in its simplest form: −25⋅arctan(4x)+C
More problems from Find indefinite integrals using the substitution