Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral and express your answer in simplest form.

int(-10)/(16+x^(2))dx
Answer:

Evaluate the integral and express your answer in simplest form.\newline1016+x2dx \int \frac{-10}{16+x^{2}} d x \newlineAnswer:

Full solution

Q. Evaluate the integral and express your answer in simplest form.\newline1016+x2dx \int \frac{-10}{16+x^{2}} d x \newlineAnswer:
  1. Recognize Standard Form: We are given the integral: \newline1016+x2dx\int \frac{-10}{16+x^{2}}\,dx\newlineTo solve this integral, we can recognize that it is a standard form of the arctangent function, where the integral of 1a2+x2dx\frac{1}{a^{2} + x^{2}}\,dx is 1a\frac{1}{a}arctanxa\frac{x}{a} + C, where C is the constant of integration.\newlineLet's identify a2=16a^{2} = 16, which gives us a=4a = 4.
  2. Identify Constant: Now we can rewrite the integral by factoring out the constant 10-10 and substituting a=4a = 4: \newline1016+x2dx=10×116+x2dx\int\frac{-10}{16+x^{2}}dx = -10 \times \int\frac{1}{16+x^{2}}dx\newline=10×142+x2dx= -10 \times \int\frac{1}{4^2+x^{2}}dx
  3. Rewrite Integral: Next, we apply the arctangent formula:\newline\(-10 \times \int \frac{11}{44^22+x^{22}}dx = 10-10 \times \left(\frac{11}{44}\right)\arctan\left(\frac{x}{44}\right) + C\newline= \left(-\frac{1010}{44}\right) \times \arctan\left(\frac{x}{44}\right) + C\newline= -\frac{55}{22} \times \arctan\left(\frac{x}{44}\right) + C
  4. Apply Arctangent Formula: We have found the indefinite integral in its simplest form: 52arctan(x4)+C-\frac{5}{2} \cdot \arctan\left(\frac{x}{4}\right) + C