Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral and express your answer in simplest form.

int(-3)/(xsqrt(x^(2)-1))dx
Answer:

Evaluate the integral and express your answer in simplest form.\newline3xx21dx \int \frac{-3}{x \sqrt{x^{2}-1}} d x \newlineAnswer:

Full solution

Q. Evaluate the integral and express your answer in simplest form.\newline3xx21dx \int \frac{-3}{x \sqrt{x^{2}-1}} d x \newlineAnswer:
  1. Recognize standard form: Recognize the integral as a standard form. The integral 3xx21dx\int \frac{-3}{x\sqrt{x^2-1}}\,dx can be recognized as a standard form related to the inverse hyperbolic function, specifically the inverse hyperbolic secant function, because the denominator has the form of a hyperbolic identity. We can use the substitution u=x21u = x^2 - 1 to simplify the integral.
  2. Perform substitution: Perform the substitution.\newlineLet u=x21u = x^2 - 1, then du=2xdxdu = 2x\,dx. We need to express 3xx21dx-\frac{3}{x\sqrt{x^2-1}}\,dx in terms of uu and dudu. Since du=2xdxdu = 2x\,dx, we can write dx=du2xdx = \frac{du}{2x}. Also, since u=x21u = x^2 - 1, we have x21=u\sqrt{x^2 - 1} = \sqrt{u}.
  3. Rewrite in terms of uu: Rewrite the integral in terms of uu.\newlineSubstituting the expressions from Step 22 into the integral, we get:\newline3xudu2x\int\frac{-3}{x\sqrt{u}} \cdot \frac{du}{2x}\newlineThis simplifies to:\newline32udu\int\frac{-3}{2\sqrt{u}} du
  4. Integrate with respect to u: Integrate with respect to u.\newlineThe integral of 32u-\frac{3}{2\sqrt{u}} with respect to u is a standard form. We can integrate it directly:\newline(32u)du=321udu\int \left(-\frac{3}{2\sqrt{u}}\right) du = -\frac{3}{2} \int \frac{1}{\sqrt{u}} du\newlineThe antiderivative of 1u\frac{1}{\sqrt{u}} is 2u2\sqrt{u}, so we have:\newline32×2u+C-\frac{3}{2} \times 2\sqrt{u} + C
  5. Simplify the result: Simplify the result.\newlineSimplifying the expression from Step 44, we get:\newline3u+C-3\sqrt{u} + C
  6. Back-substitute u: Back-substitute uu with x21x^2 - 1.\newlineNow we need to replace uu with our original substitution, u=x21u = x^2 - 1, to express the antiderivative in terms of xx:\newline3x21+C-3\sqrt{x^2 - 1} + C