Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral and express your answer in simplest form.

int(-5)/(25+25x^(2))dx
Answer:

Evaluate the integral and express your answer in simplest form.\newline525+25x2dx \int \frac{-5}{25+25 x^{2}} d x \newlineAnswer:

Full solution

Q. Evaluate the integral and express your answer in simplest form.\newline525+25x2dx \int \frac{-5}{25+25 x^{2}} d x \newlineAnswer:
  1. Factor out constant: Simplify the integral by factoring out the constant 2525 from the denominator.\newline525+25x2dx=5/251+x2dx=1/51+x2dx\int\frac{-5}{25+25x^{2}}dx = \int\frac{-5/25}{1+x^{2}}dx = \int\frac{-1/5}{1+x^{2}}dx
  2. Recognize arctangent form: Recognize that the integral is now in the form of the arctangent function derivative. (15)/(1+x2)dx=15(11+x2)dx\int(-\frac{1}{5})/(1+x^{2})dx = -\frac{1}{5} \int(\frac{1}{1+x^{2}})dx
  3. Evaluate using arctangent: Evaluate the integral using the arctangent function.\newline1511+x2dx=15arctan(x)+C-\frac{1}{5} \int \frac{1}{1+x^{2}}dx = -\frac{1}{5} \arctan(x) + C
  4. Write final answer: Write the final answer.\newlineAnswer: 15arctan(x)+C-\frac{1}{5} \cdot \arctan(x) + C