Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral and express your answer in simplest form.

int(6)/(sqrt(4-x^(2)))dx
Answer:

Evaluate the integral and express your answer in simplest form.\newline64x2dx \int \frac{6}{\sqrt{4-x^{2}}} d x \newlineAnswer:

Full solution

Q. Evaluate the integral and express your answer in simplest form.\newline64x2dx \int \frac{6}{\sqrt{4-x^{2}}} d x \newlineAnswer:
  1. Recognize standard form: Recognize the integral as a standard form. The integral 64x2dx\int \frac{6}{\sqrt{4-x^2}}\,dx resembles the integral of the form dua2u2\int \frac{du}{\sqrt{a^2-u^2}}, which is a standard inverse trigonometric integral.
  2. Trigonometric substitution: Use a trigonometric substitution. Let x=2sin(θ)x = 2\sin(\theta), which implies dx=2cos(θ)dθdx = 2\cos(\theta)d\theta. The limits of integration will change accordingly if this were a definite integral, but since it's an indefinite integral, we will substitute back to xx at the end.
  3. Substitute xx with 2sin(θ)2\sin(\theta): Substitute xx with 2sin(θ)2\sin(\theta) in the integral.\newlineThe integral becomes 64(2sin(θ))22cos(θ)dθ\int \frac{6}{\sqrt{4-(2\sin(\theta))^2}} \cdot 2\cos(\theta)\,d\theta.
  4. Simplify the integral: Simplify the integral.\newlineThe integral simplifies to \int\frac{\(6\)}{\sqrt{\(4\)\(-4\)\sin^\(2\)(\theta)}} \cdot \(2\cos(\theta)d\theta = \int\frac{66}{\sqrt{44(11-\sin^22(\theta))}} \cdot 22\cos(\theta)d\theta\.
  5. Use Pythagorean identity: Use the Pythagorean identity sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1. The integral further simplifies to 62cos2(θ)2cos(θ)dθ=6cos(θ)2cos(θ)dθ\int \frac{6}{2\sqrt{\cos^2(\theta)}} \cdot 2\cos(\theta)d\theta = \int \frac{6}{\cos(\theta)} \cdot 2\cos(\theta)d\theta.
  6. Cancel cos(θ)\cos(\theta) terms: Cancel out the cos(θ)\cos(\theta) terms.\newlineThe integral simplifies to 6×2dθ=12dθ\int 6 \times 2\,d\theta = \int 12\,d\theta.
  7. Integrate with respect to θ\theta: Integrate with respect to θ\theta. The integral of 1212 with respect to θ\theta is 12θ12\theta.
  8. Substitute back to xx: Substitute back to xx using the original substitution x=2sin(θ)x = 2\sin(\theta).\newlineWe need to solve for θ\theta in terms of xx. Since x=2sin(θ)x = 2\sin(\theta), we have sin(θ)=x2\sin(\theta) = \frac{x}{2}. Therefore, θ=arcsin(x2)\theta = \arcsin(\frac{x}{2}).
  9. Write final answer: Write the final answer.\newlineThe final answer is 12θ+C12\theta + C, where CC is the constant of integration. Substituting θ\theta back, we get 12arcsin(x/2)+C12\arcsin(x/2) + C.