Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(4)^(e^(3)+3)(2x-5)/(x-3)dx. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Evaluate 4e3+32x5x3dx \int_{4}^{e^{3}+3} \frac{2 x-5}{x-3} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Full solution

Q. Evaluate 4e3+32x5x3dx \int_{4}^{e^{3}+3} \frac{2 x-5}{x-3} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
  1. Perform Long Division: We have the integral:\newline4e3+32x5x3dx\int_{4}^{e^{3}+3}\frac{2x-5}{x-3}\,dx\newlineFirst, we will perform long division on the integrand to simplify the expression.\newline2x5x3\frac{2x-5}{x-3} can be divided to get 22 with a remainder of 1-1:\newline2x5=2(x3)12x-5 = 2(x-3) - 1\newlineSo, 2x5x3=21x3\frac{2x-5}{x-3} = 2 - \frac{1}{x-3}\newlineNow, we can rewrite the integral as:\newline4e3+3(21x3)dx\int_{4}^{e^{3}+3}(2 - \frac{1}{x-3})\,dx
  2. Separate into Simpler Integrals: Next, we separate the integral into two simpler integrals: 4e3+32dx4e3+31x3dx\int_{4}^{e^{3}+3}2\,dx - \int_{4}^{e^{3}+3}\frac{1}{x-3}\,dx Now we can integrate each term separately. The integral of a constant is just the constant times the variable, and the integral of 1x3\frac{1}{x-3} is the natural logarithm of the absolute value of (x3)(x-3). So we have: 2xlnx32x - \ln|x-3| evaluated from 44 to e3+3e^{3}+3.
  3. Evaluate Antiderivative at Limits: Now we evaluate the antiderivative at the upper and lower limits of integration: \newline(2(e3+3)lne3+33)(2(4)ln43)(2(e^{3}+3) - \ln|e^{3}+3-3|) - (2(4) - \ln|4-3|)\newlineSimplify the expressions:\newline(2e3+6lne3)(8ln1)(2e^{3}+6 - \ln|e^{3}|) - (8 - \ln|1|)\newlineSince lne3=3\ln|e^{3}| = 3 (because e3e^{3} is positive, we don't need the absolute value) and ln1=0\ln|1| = 0, we get:\newline(2e3+63)(80)(2e^{3}+6 - 3) - (8 - 0)
  4. Perform Subtraction: Now we perform the subtraction:\newline2e3+6382e^{3}+6 - 3 - 8\newline= 2e352e^{3} - 5\newlineThis is the value of the definite integral.