Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(3)^(9)(2x^(2)-13 x+15)/(x-2)dx. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Evaluate 392x213x+15x2dx \int_{3}^{9} \frac{2 x^{2}-13 x+15}{x-2} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Full solution

Q. Evaluate 392x213x+15x2dx \int_{3}^{9} \frac{2 x^{2}-13 x+15}{x-2} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
  1. Perform Polynomial Long Division: Perform polynomial long division to simplify the integrand.\newlineWe need to divide the polynomial 2x213x+152x^2 - 13x + 15 by x2x - 2.
  2. Split Integrals: Split the integral into two separate integrals.\newline(2x3+9x2)dx=(2x3)dx+(9x2)dx\int(2x - 3 + \frac{9}{x - 2})dx = \int(2x - 3)dx + \int(\frac{9}{x - 2})dx
  3. Integrate Terms Separately: Integrate each term separately.\newlineThe integral of 2x32x - 3 is x23xx^2 - 3x, and the integral of 9x2\frac{9}{x - 2} is 9lnx29\ln|x - 2|.\newline(2x3)dx=x23x\int(2x - 3)\,dx = x^2 - 3x\newline(9x2)dx=9lnx2\int\left(\frac{9}{x - 2}\right)dx = 9\ln|x - 2|
  4. Combine Integrals: Combine the integrals and evaluate from 33 to 99. The combined integral is (x23x+9lnx2)(x^2 - 3x + 9\ln|x - 2|) from 33 to 99.
  5. Evaluate Definite Integral: Evaluate the definite integral.\newlinePlug in the upper limit 99 and the lower limit 33 into the antiderivative and subtract.\newlineF(9)=9239+9ln92F(9) = 9^2 - 3\cdot9 + 9\ln|9 - 2|\newlineF(3)=3233+9ln32F(3) = 3^2 - 3\cdot3 + 9\ln|3 - 2|
  6. Perform Calculations for Limits: Perform the calculations for each limit.\newlineF(9)=8127+9ln(7)F(9) = 81 - 27 + 9\ln(7)\newlineF(3)=99+9ln(1)F(3) = 9 - 9 + 9\ln(1)
  7. Subtract Limits: Subtract F(3)F(3) from F(9)F(9) to get the final result.F(9)F(3)=(8127+9ln(7))(99+9ln(1))F(9) - F(3) = (81 - 27 + 9\ln(7)) - (9 - 9 + 9\ln(1))
  8. Simplify Expression: Simplify the expression.\newlineF(9)F(3)=8127+9ln(7)9+9+0F(9) - F(3) = 81 - 27 + 9\ln(7) - 9 + 9 + 0\newlineF(9)F(3)=54+9ln(7)F(9) - F(3) = 54 + 9\ln(7)