Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(3)^(6)(2x^(2)-9x+12)/(x-2)dx. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Evaluate 362x29x+12x2dx \int_{3}^{6} \frac{2 x^{2}-9 x+12}{x-2} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Full solution

Q. Evaluate 362x29x+12x2dx \int_{3}^{6} \frac{2 x^{2}-9 x+12}{x-2} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
  1. Perform Polynomial Division: First, we need to perform polynomial long division or synthetic division to simplify the integrand (2x29x+12)/(x2)(2x^2 - 9x + 12) / (x - 2) since the numerator is a polynomial of higher degree than the denominator.
  2. Integrate Simplified Function: Performing the polynomial long division, we divide 2x29x+122x^2 - 9x + 12 by x2x - 2:\newline 2x52x - 5\newline ___________\newlinex - 22 | 2x29x+122x^2 - 9x + 12\newline - (2x24x2x^2 - 4x)\newline ___________\newline 5x+12-5x + 12\newline - (5x+10-5x + 10)\newline ___________\newline 22\newlineThe result of the division is 2x52x - 5 with a remainder of 22. So, the integrand can be rewritten as:\newlinex2x - 200
  3. Evaluate Definite Integral: Now we can integrate the function term by term:\newline(2x5+2x2)dx=2xdx5dx+2x2dx\int(2x - 5 + \frac{2}{x - 2})dx = \int 2x\,dx - \int 5\,dx + \int \frac{2}{x - 2}\,dx
  4. Substitute Values: Integrating each term gives us:\newline2xdx=x2\int 2x\,dx = x^2\newline5dx=5x\int 5\,dx = 5x\newline2x2dx=2lnx2\int \frac{2}{x - 2}\,dx = 2\ln|x - 2|\newlineSo the indefinite integral is:\newlinex25x+2lnx2+Cx^2 - 5x + 2\ln|x - 2| + C
  5. Simplify Final Answer: Now we need to evaluate the definite integral from x=3x = 3 to x=6x = 6. We do this by substituting the upper and lower limits into the indefinite integral and finding the difference: F(6)F(3)=[625(6)+2ln62][325(3)+2ln32]F(6) - F(3) = [6^2 - 5(6) + 2\ln|6 - 2|] - [3^2 - 5(3) + 2\ln|3 - 2|]
  6. Simplify Final Answer: Now we need to evaluate the definite integral from x=3x = 3 to x=6x = 6. We do this by substituting the upper and lower limits into the indefinite integral and finding the difference: F(6)F(3)=[625(6)+2ln62][325(3)+2ln32]F(6) - F(3) = [6^2 - 5(6) + 2\ln|6 - 2|] - [3^2 - 5(3) + 2\ln|3 - 2|] Substitute the values and simplify: F(6)F(3)=[3630+2ln4][915+2ln1]F(6) - F(3) = [36 - 30 + 2\ln4] - [9 - 15 + 2\ln1] = [6+2ln4][6+0][6 + 2\ln4] - [-6 + 0] = 6+2ln4+66 + 2\ln4 + 6 = 12+2ln412 + 2\ln4
  7. Simplify Final Answer: Now we need to evaluate the definite integral from x=3x = 3 to x=6x = 6. We do this by substituting the upper and lower limits into the indefinite integral and finding the difference: F(6)F(3)=[625(6)+2ln62][325(3)+2ln32]F(6) - F(3) = [6^2 - 5(6) + 2\ln|6 - 2|] - [3^2 - 5(3) + 2\ln|3 - 2|] Substitute the values and simplify: F(6)F(3)=[3630+2ln4][915+2ln1]F(6) - F(3) = [36 - 30 + 2\ln4] - [9 - 15 + 2\ln1] = [6+2ln4][6+0][6 + 2\ln4] - [-6 + 0] = 6+2ln4+66 + 2\ln4 + 6 = 12+2ln412 + 2\ln4 Since ln1\ln1 is 00, we can simplify further: 12+2ln4=12+2ln(22)=12+4ln212 + 2\ln4 = 12 + 2\ln(2^2) = 12 + 4\ln2
  8. Simplify Final Answer: Now we need to evaluate the definite integral from x=3x = 3 to x=6x = 6. We do this by substituting the upper and lower limits into the indefinite integral and finding the difference: F(6)F(3)=[625(6)+2ln62][325(3)+2ln32]F(6) - F(3) = [6^2 - 5(6) + 2\ln|6 - 2|] - [3^2 - 5(3) + 2\ln|3 - 2|] Substitute the values and simplify: F(6)F(3)=[3630+2ln4][915+2ln1]F(6) - F(3) = [36 - 30 + 2\ln4] - [9 - 15 + 2\ln1] = [6+2ln4][6+0][6 + 2\ln4] - [-6 + 0] = 6+2ln4+66 + 2\ln4 + 6 = 12+2ln412 + 2\ln4 Since ln1\ln1 is 00, we can simplify further: 12+2ln4=12+2ln(22)=12+4ln212 + 2\ln4 = 12 + 2\ln(2^2) = 12 + 4\ln2 The final answer in simplest form with all logs condensed into a single logarithm is: x=6x = 600