Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(3)^(4)(4x^(2)-9x+1)/(x-2)dx. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Evaluate 344x29x+1x2dx \int_{3}^{4} \frac{4 x^{2}-9 x+1}{x-2} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Full solution

Q. Evaluate 344x29x+1x2dx \int_{3}^{4} \frac{4 x^{2}-9 x+1}{x-2} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
  1. Perform Polynomial Long Division: We will first perform polynomial long division to simplify the integrand (4x29x+1)/(x2)(4x^2 - 9x + 1) / (x - 2).
  2. Simplify Integrand: Performing the division, we get:\newline(4x29x+1):(x2)=4x+1(4x^2 - 9x + 1) : (x - 2) = 4x + 1 with a remainder of 1-1.\newlineSo, (4x29x+1)/(x2)=4x+11/(x2)(4x^2 - 9x + 1) / (x - 2) = 4x + 1 - 1/(x - 2).
  3. Write Integral as Sum: Now we can write the integral as the sum of two simpler integrals:\newlinex=3x=4(4x+11x2)dx\int_{x = 3}^{x = 4} (4x + 1 - \frac{1}{x - 2}) \, dx.
  4. Integrate Each Term: We will integrate each term separately:\newline(4x+1)dx=2x2+x+C\int(4x + 1) \, dx = 2x^2 + x + C\newlineand\newline(1/(x2))dx=lnx2+C\int(-1/(x - 2)) \, dx = -\ln|x - 2| + C.
  5. Evaluate Definite Integral: Now we evaluate the definite integral from x=3x = 3 to x=4x = 4:\newline34(4x+11x2)dx=[2x2+xlnx2]34\int_{3}^{4}(4x + 1 - \frac{1}{x - 2}) \, dx = [2x^2 + x - \ln|x - 2|]_{3}^{4}.
  6. Upper Limit Calculation: Plugging in the upper limit x=4x = 4:2(4)2+4ln42=2(16)+4ln2=32+4ln(2)2(4)^2 + 4 - \ln|4 - 2| = 2(16) + 4 - \ln|2| = 32 + 4 - \ln(2).
  7. Lower Limit Calculation: Plugging in the lower limit x=3x = 3:2(3)2+3ln32=2(9)+3ln1=18+3ln(1)=18+30=212(3)^2 + 3 - \ln|3 - 2| = 2(9) + 3 - \ln|1| = 18 + 3 - \ln(1) = 18 + 3 - 0 = 21.
  8. Subtract Values: Subtract the value at the lower limit from the value at the upper limit:\newline(32+4ln(2))(21)=36ln(2)21=15ln(2)(32 + 4 - \ln(2)) - (21) = 36 - \ln(2) - 21 = 15 - \ln(2).
  9. Final Answer: The final answer in simplest form with all logs condensed into a single logarithm is:\newline15ln(2)15 - \ln(2).