Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(3)^(4)(2x^(2)-15 x+22)/(x-5)dx. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Evaluate 342x215x+22x5dx \int_{3}^{4} \frac{2 x^{2}-15 x+22}{x-5} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Full solution

Q. Evaluate 342x215x+22x5dx \int_{3}^{4} \frac{2 x^{2}-15 x+22}{x-5} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
  1. Perform Polynomial Long Division: We need to evaluate the definite integral of the rational function (2x215x+22)/(x5)(2x^2 - 15x + 22) / (x - 5) from x=3x = 3 to x=4x = 4. To do this, we will first perform polynomial long division to simplify the integrand.
  2. Split Integral into Two Parts: Performing the polynomial long division of (2x215x+22)(2x^2 - 15x + 22) by (x5)(x - 5), we get:\newline2x215x+22=(x5)(2x+5)+(3x+47)2x^2 - 15x + 22 = (x - 5)(2x + 5) + (-3x + 47)\newlineSo, the integral becomes:\newline34(2x+53x47x5)dx\int_{3}^{4}(2x + 5 - \frac{3x - 47}{x - 5})dx
  3. Integrate Polynomial Part: Now we can split the integral into two parts:\newline34(2x+5)dx34(3x47x5)dx\int_{3}^{4}(2x + 5)\,dx - \int_{3}^{4}\left(\frac{3x - 47}{x - 5}\right)\,dx\newlineWe will integrate each part separately.
  4. Integrate Rational Part: First, we integrate the polynomial part:\newline34(2x+5)dx=[x2+5x]34\int_{3}^{4}(2x + 5)\,dx = [x^2 + 5x]_{3}^{4}\newlineEvaluating from x=3x = 3 to x=4x = 4, we get:\newline(42+54)(32+53)=(16+20)(9+15)=3624=12(4^2 + 5\cdot4) - (3^2 + 5\cdot3) = (16 + 20) - (9 + 15) = 36 - 24 = 12
  5. Substitution Method: Next, we integrate the rational part:\newline34(3x47x5)dx\int_{3}^{4}\left(\frac{3x - 47}{x - 5}\right)dx\newlineTo integrate this, we will use the substitution method. Let u=x5u = x - 5, then du=dxdu = dx and x=u+5x = u + 5.\newlineThe limits of integration also change: when x=3x = 3, u=2u = -2; when x=4x = 4, u=1u = -1.
  6. Simplify the Integrand: Substituting xx with u+5u + 5, the integral becomes:\newline21(3(u+5)47u)du\int_{-2}^{-1}\left(\frac{3(u + 5) - 47}{u}\right)du\newlineSimplify the integrand:\newline21(3u+1547u)du=21(3u32u)du\int_{-2}^{-1}\left(\frac{3u + 15 - 47}{u}\right)du = \int_{-2}^{-1}\left(\frac{3u - 32}{u}\right)du\newlineSplit the integral:\newline21(332u)du\int_{-2}^{-1}(3 - \frac{32}{u})du
  7. Integrate Each Term: Now we integrate each term separately:\newline213du21(32u)du\int_{-2}^{-1}3du - \int_{-2}^{-1}\left(\frac{32}{u}\right)du\newlineThe first integral is straightforward:\newline213du=[3u]21=3(1)3(2)=3+6=3\int_{-2}^{-1}3du = [3u]_{-2}^{-1} = 3(-1) - 3(-2) = -3 + 6 = 3\newlineThe second integral involves a natural logarithm:\newline21(32u)du=32lnu\int_{-2}^{-1}\left(\frac{32}{u}\right)du = 32 \cdot \ln|u| evaluated from u=2u = -2 to u=1u = -1.
  8. Evaluate Logarithmic Part: Evaluating the logarithmic part, we get:\newline32lnu(2)1=32(ln1ln2)=32(ln(1)ln(2))32 \cdot \ln|u|_{(-2)^{-1}} = 32(\ln|-1| - \ln|-2|) = 32(\ln(1) - \ln(2))\newlineSince ln(1)=0\ln(1) = 0, this simplifies to:\newline32ln(2)-32 \cdot \ln(2)
  9. Combine Results: Combining the results from the polynomial and rational parts, we get the final value of the definite integral:\newline1212 (from the polynomial part) 32×ln(2)- 32 \times \ln(2) (from the rational part)\newlineThis is the final answer in its simplest form with the logarithm condensed.