Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Evaluate
∫
1
5
2
x
2
−
15
x
−
28
x
−
9
d
x
\int_{1}^{5} \frac{2 x^{2}-15 x-28}{x-9} d x
∫
1
5
x
−
9
2
x
2
−
15
x
−
28
d
x
. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
View step-by-step help
Home
Math Problems
Calculus
Find indefinite integrals using the substitution
Full solution
Q.
Evaluate
∫
1
5
2
x
2
−
15
x
−
28
x
−
9
d
x
\int_{1}^{5} \frac{2 x^{2}-15 x-28}{x-9} d x
∫
1
5
x
−
9
2
x
2
−
15
x
−
28
d
x
. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
Perform Polynomial Long Division:
Perform polynomial
long division
to simplify the integrand.
\newline
We need to divide the polynomial
2
x
2
−
15
x
−
28
2x^2 - 15x - 28
2
x
2
−
15
x
−
28
by
x
−
9
x - 9
x
−
9
.
Long Division Calculation:
Polynomial long division calculation.
\newline
2
x
2
−
15
x
−
28
:
(
x
−
9
)
=
2
x
+
3
2x^2 - 15x - 28 : (x - 9) = 2x + 3
2
x
2
−
15
x
−
28
:
(
x
−
9
)
=
2
x
+
3
with a remainder of
1
1
1
.
\newline
So,
(
2
x
2
−
15
x
−
28
)
/
(
x
−
9
)
=
2
x
+
3
+
1
/
(
x
−
9
)
(2x^2 - 15x - 28)/(x - 9) = 2x + 3 + 1/(x - 9)
(
2
x
2
−
15
x
−
28
)
/
(
x
−
9
)
=
2
x
+
3
+
1/
(
x
−
9
)
.
Set Up Integral:
Set up the integral with the simplified integrand.
∫
1
5
(
2
x
+
3
+
1
x
−
9
)
d
x
=
∫
1
5
2
x
d
x
+
∫
1
5
3
d
x
+
∫
1
5
1
x
−
9
d
x
\int_{1}^{5}(2x + 3 + \frac{1}{x - 9})dx = \int_{1}^{5}2xdx + \int_{1}^{5}3dx + \int_{1}^{5}\frac{1}{x - 9}dx
∫
1
5
(
2
x
+
3
+
x
−
9
1
)
d
x
=
∫
1
5
2
x
d
x
+
∫
1
5
3
d
x
+
∫
1
5
x
−
9
1
d
x
.
Evaluate Integrals:
Evaluate the integrals separately.
\newline
First,
∫
1
5
2
x
d
x
=
[
x
2
]
1
5
=
5
2
−
1
2
=
25
−
1
=
24
\int_{1}^{5}2x\,dx = [x^2]_{1}^{5} = 5^2 - 1^2 = 25 - 1 = 24
∫
1
5
2
x
d
x
=
[
x
2
]
1
5
=
5
2
−
1
2
=
25
−
1
=
24
.
\newline
Second,
∫
1
5
3
d
x
=
[
3
x
]
1
5
=
3
⋅
5
−
3
⋅
1
=
15
−
3
=
12
\int_{1}^{5}3\,dx = [3x]_{1}^{5} = 3\cdot5 - 3\cdot1 = 15 - 3 = 12
∫
1
5
3
d
x
=
[
3
x
]
1
5
=
3
⋅
5
−
3
⋅
1
=
15
−
3
=
12
.
\newline
Third,
∫
1
5
1
x
−
9
d
x
=
[
ln
∣
x
−
9
∣
]
1
5
=
ln
∣
5
−
9
∣
−
ln
∣
1
−
9
∣
=
ln
∣
4
∣
−
ln
∣
8
∣
\int_{1}^{5}\frac{1}{x - 9}\,dx = [\ln|x - 9|]_{1}^{5} = \ln|5 - 9| - \ln|1 - 9| = \ln|4| - \ln|8|
∫
1
5
x
−
9
1
d
x
=
[
ln
∣
x
−
9∣
]
1
5
=
ln
∣5
−
9∣
−
ln
∣1
−
9∣
=
ln
∣4∣
−
ln
∣8∣
.
Combine Integral Results:
Combine the results of the integrals.
\newline
The integral from
1
1
1
to
5
5
5
of
(
2
x
2
−
15
x
−
28
)
/
(
x
−
9
)
d
x
(2x^2 - 15x - 28)/(x - 9)dx
(
2
x
2
−
15
x
−
28
)
/
(
x
−
9
)
d
x
is
24
+
12
+
ln
∣
4
∣
−
ln
∣
8
∣
.
24 + 12 + \ln|4| - \ln|8|.
24
+
12
+
ln
∣4∣
−
ln
∣8∣.
Condense Logarithms:
Condense the logarithms into a single logarithm.
ln
∣
4
∣
−
ln
∣
8
∣
=
ln
(
∣
4
∣
∣
8
∣
)
=
ln
(
1
2
)
\ln|4| - \ln|8| = \ln(\frac{|4|}{|8|}) = \ln(\frac{1}{2})
ln
∣4∣
−
ln
∣8∣
=
ln
(
∣8∣
∣4∣
)
=
ln
(
2
1
)
.
Final Answer:
Combine all terms to get the final answer.
\newline
The final answer is
24
+
12
+
ln
(
1
2
)
=
36
+
ln
(
1
2
)
24 + 12 + \ln(\frac{1}{2}) = 36 + \ln(\frac{1}{2})
24
+
12
+
ln
(
2
1
)
=
36
+
ln
(
2
1
)
.
More problems from Find indefinite integrals using the substitution
Question
Evaluate the integral.
\newline
∫
−
x
4
−
3
x
d
x
\int-x 4^{-3 x} d x
∫
−
x
4
−
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
3
e
−
2
x
d
x
\int 6 x^{3} e^{-2 x} d x
∫
6
x
3
e
−
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
x
5
3
x
d
x
\int x 5^{3 x} d x
∫
x
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
e
2
x
d
x
\int-2 x e^{2 x} d x
∫
−
2
x
e
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
cos
(
−
2
x
)
d
x
\int-2 x \cos (-2 x) d x
∫
−
2
x
cos
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
x
cos
(
−
3
x
)
d
x
\int-x \cos (-3 x) d x
∫
−
x
cos
(
−
3
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
5
3
x
d
x
\int 6 x^{2} 5^{3 x} d x
∫
6
x
2
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
6
x
4
−
4
x
d
x
\int-6 x 4^{-4 x} d x
∫
−
6
x
4
−
4
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
2
3
x
d
x
\int 6 x^{2} 2^{3 x} d x
∫
6
x
2
2
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
3
x
sin
(
−
2
x
)
d
x
\int-3 x \sin (-2 x) d x
∫
−
3
x
sin
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant