Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(1)^(5)(2x^(2)-15 x-28)/(x-9)dx. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Evaluate 152x215x28x9dx \int_{1}^{5} \frac{2 x^{2}-15 x-28}{x-9} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Full solution

Q. Evaluate 152x215x28x9dx \int_{1}^{5} \frac{2 x^{2}-15 x-28}{x-9} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
  1. Perform Polynomial Long Division: Perform polynomial long division to simplify the integrand.\newlineWe need to divide the polynomial 2x215x282x^2 - 15x - 28 by x9x - 9.
  2. Long Division Calculation: Polynomial long division calculation.\newline2x215x28:(x9)=2x+32x^2 - 15x - 28 : (x - 9) = 2x + 3 with a remainder of 11.\newlineSo, (2x215x28)/(x9)=2x+3+1/(x9)(2x^2 - 15x - 28)/(x - 9) = 2x + 3 + 1/(x - 9).
  3. Set Up Integral: Set up the integral with the simplified integrand. 15(2x+3+1x9)dx=152xdx+153dx+151x9dx\int_{1}^{5}(2x + 3 + \frac{1}{x - 9})dx = \int_{1}^{5}2xdx + \int_{1}^{5}3dx + \int_{1}^{5}\frac{1}{x - 9}dx.
  4. Evaluate Integrals: Evaluate the integrals separately.\newlineFirst, 152xdx=[x2]15=5212=251=24\int_{1}^{5}2x\,dx = [x^2]_{1}^{5} = 5^2 - 1^2 = 25 - 1 = 24.\newlineSecond, 153dx=[3x]15=3531=153=12\int_{1}^{5}3\,dx = [3x]_{1}^{5} = 3\cdot5 - 3\cdot1 = 15 - 3 = 12.\newlineThird, 151x9dx=[lnx9]15=ln59ln19=ln4ln8\int_{1}^{5}\frac{1}{x - 9}\,dx = [\ln|x - 9|]_{1}^{5} = \ln|5 - 9| - \ln|1 - 9| = \ln|4| - \ln|8|.
  5. Combine Integral Results: Combine the results of the integrals.\newlineThe integral from 11 to 55 of (2x215x28)/(x9)dx(2x^2 - 15x - 28)/(x - 9)dx is 24+12+ln4ln8.24 + 12 + \ln|4| - \ln|8|.
  6. Condense Logarithms: Condense the logarithms into a single logarithm. ln4ln8=ln(48)=ln(12)\ln|4| - \ln|8| = \ln(\frac{|4|}{|8|}) = \ln(\frac{1}{2}).
  7. Final Answer: Combine all terms to get the final answer.\newlineThe final answer is 24+12+ln(12)=36+ln(12)24 + 12 + \ln(\frac{1}{2}) = 36 + \ln(\frac{1}{2}).