Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(6)(10e^(-0.5 x)+4)dx and express the answer in simplest form.
Answer:

Evaluate 06(10e0.5x+4)dx \int_{0}^{6}\left(10 e^{-0.5 x}+4\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 06(10e0.5x+4)dx \int_{0}^{6}\left(10 e^{-0.5 x}+4\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Integrate first part: Now we will integrate the first part, 10e0.5xdx\int 10e^{-0.5x}\,dx. The integral of eaxe^{ax} with respect to xx is 1aeax\frac{1}{a}e^{ax}, so the integral of 10e0.5x10e^{-0.5x} is: 10e0.5xdx=20e0.5x\int 10e^{-0.5x}\,dx = -20e^{-0.5x}
  2. Integrate second part: Next, we integrate the second part, 4dx\int 4 \, dx. The integral of a constant is just the constant times the variable, so: 4dx=4x\int 4 \, dx = 4x
  3. Combine integrals: Now we combine the two integrals to get the indefinite integral:\newline(10e(0.5x)+4)dx=20e(0.5x)+4x+C\int(10e^{(-0.5x)} + 4)dx = -20e^{(-0.5x)} + 4x + C\newlineSince we are evaluating a definite integral from 00 to 66, we do not need to include the constant of integration CC.
  4. Evaluate at upper limit: We evaluate the indefinite integral at the upper limit of integration, x=6x = 6:20e(0.5×6)+4×6=20e3+24-20e^{(-0.5\times 6)} + 4\times 6 = -20e^{-3} + 24
  5. Evaluate at lower limit: Next, we evaluate the indefinite integral at the lower limit of integration, x=0x = 0:20e(0.50)+40=20e(0)+0=20-20e^{(-0.5\cdot 0)} + 4\cdot 0 = -20e^{(0)} + 0 = -20
  6. Find definite integral: We subtract the value of the indefinite integral at the lower limit from the value at the upper limit to find the definite integral: (20e3+24)(20)=20e3+24+20 (-20e^{-3} + 24) - (-20) = -20e^{-3} + 24 + 20
  7. Simplify final answer: Now we simplify the expression to find the final answer: 20e3+24+20=20e3+44-20e^{-3} + 24 + 20 = -\frac{20}{e^3} + 44