Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(4)(3e^(-0.25 x)+8)dx and express the answer in simplest form.
Answer:

Evaluate 04(3e0.25x+8)dx \int_{0}^{4}\left(3 e^{-0.25 x}+8\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 04(3e0.25x+8)dx \int_{0}^{4}\left(3 e^{-0.25 x}+8\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Identify Function: Identify the function to integrate.\newlineWe need to integrate the function f(x)=3e0.25x+8f(x) = 3e^{-0.25x} + 8 over the interval [0,4][0, 4].
  2. Break into Two: Break the integral into two separate integrals.\newlineThe integral of a sum is the sum of the integrals, so we can write:\newline\int(\(3e^{0-0.2525x} + 88)\,dx = \int 33e^{0-0.2525x}\,dx + \int 88\,dx
  3. Integrate First Part: Integrate the first part 3e0.25xdx\int 3e^{-0.25x}\,dx. To integrate 3e0.25x3e^{-0.25x}, we use the substitution method. Let u=0.25xu = -0.25x, then du=0.25dxdu = -0.25dx, or dx=4dudx = -4du. The integral becomes 12eudu-12\int e^u \,du, which evaluates to 12eu+C-12e^u + C. Substituting back for uu, we get 12e0.25x+C-12e^{-0.25x} + C.
  4. Integrate Second Part: Integrate the second part 8dx\int 8\,dx. The integral of a constant is the constant times the variable of integration, so 8dx=8x+C\int 8\,dx = 8x + C.
  5. Combine Integrals: Combine the two integrals.\newlineThe combined integral is 12e0.25x+8x+C-12e^{-0.25x} + 8x + C.
  6. Evaluate Definite Integral: Evaluate the definite integral from 00 to 44. We need to calculate the combined integral at the upper limit x=4x = 4 and subtract the value of the combined integral at the lower limit x=0x = 0. F(4)=12e(0.254)+84F(4) = -12e^{(-0.25\cdot4)} + 8\cdot4 F(0)=12e(0.250)+80F(0) = -12e^{(-0.25\cdot0)} + 8\cdot0
  7. Calculate F Values: Calculate F(4)F(4) and F(0)F(0).
    F(4)=12e1+32F(4) = -12e^{-1} + 32
    F(0)=12e0+0F(0) = -12e^{0} + 0
    F(0)F(0) simplifies to 12+0-12 + 0, since e0=1e^0 = 1.
  8. Subtract F(0)F(0) from F(4)F(4): Subtract F(0)F(0) from F(4)F(4) to get the definite integral.\newline04(3e0.25x+8)dx=F(4)F(0)\int_{0}^{4}(3e^{-0.25x} + 8)dx = F(4) - F(0)\newline=(12e1+32)(12)= (-12e^{-1} + 32) - (-12)\newline=12e1+32+12= -12e^{-1} + 32 + 12
  9. Simplify Final Answer: Simplify the expression to get the final answer. \newline12e1+32+12-12e^{-1} + 32 + 12 simplifies to 12e+44-\frac{12}{e} + 44.