Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write your answer in simplest form.

int(5sqrt(x^(3)))/(4)dx
Answer:

Calculate the integral and write your answer in simplest form.\newline5x34dx \int \frac{5 \sqrt{x^{3}}}{4} \mathrm{dx} \newlineAnswer:

Full solution

Q. Calculate the integral and write your answer in simplest form.\newline5x34dx \int \frac{5 \sqrt{x^{3}}}{4} \mathrm{dx} \newlineAnswer:
  1. Simplify integrand: Simplify the integrand.\newlineThe integral of a constant times a function is the constant times the integral of the function. So, we can take the constant 54\frac{5}{4} out of the integral.\newlineI=5x34dxI = \int \frac{5\sqrt{x^{3}}}{4}dx\newlineI=(54)×x3dxI = \left(\frac{5}{4}\right) \times \int \sqrt{x^{3}}dx
  2. Rewrite square root: Rewrite the square root of x3x^3 as x(3/2)x^{(3/2)}.\newlineI=54x3dxI = \frac{5}{4} \int \sqrt{x^{3}}\,dx\newlineI=54x(3/2)dxI = \frac{5}{4} \int x^{(3/2)}\,dx
  3. Apply power rule: Apply the power rule for integration.\newlineThe power rule states that the integral of xnx^n with respect to xx is (x(n+1))/(n+1)(x^{(n+1)})/(n+1), provided n1n \neq -1.\newlineI=54x32dxI = \frac{5}{4} \int x^{\frac{3}{2}}\,dx\newlineI=54[x(32+1)(32+1)]+CI = \frac{5}{4} \left[\frac{x^{(\frac{3}{2} + 1)}}{(\frac{3}{2} + 1)}\right] + C
  4. Simplify exponent and fraction: Simplify the exponent and the fraction.\newlineI=54[x5252]+CI = \frac{5}{4} \cdot \left[\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right] + C\newlineI=54[25x52]+CI = \frac{5}{4} \cdot \left[\frac{2}{5} \cdot x^{\frac{5}{2}}\right] + C
  5. Simplify constants: Simplify the constants.\newlineI=(54)(25)x52+CI = \left(\frac{5}{4}\right) \cdot \left(\frac{2}{5}\right) \cdot x^{\frac{5}{2}} + C\newlineI=(12)x52+CI = \left(\frac{1}{2}\right) \cdot x^{\frac{5}{2}} + C
  6. Write final answer: Write the final answer.\newlineThe indefinite integral of 5x34\frac{5\sqrt{x^{3}}}{4} with respect to xx is 12x52+C\frac{1}{2} \cdot x^{\frac{5}{2}} + C.