Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write your answer in simplest form.

int(sqrt(x^(5)))/(4)dx
Answer:

Calculate the integral and write your answer in simplest form.\newlinex54dx \int \frac{\sqrt{x^{5}}}{4} \mathrm{dx} \newlineAnswer:

Full solution

Q. Calculate the integral and write your answer in simplest form.\newlinex54dx \int \frac{\sqrt{x^{5}}}{4} \mathrm{dx} \newlineAnswer:
  1. Simplify integrand: Simplify the integrand.\newlineThe integrand x54\frac{\sqrt{x^{5}}}{4} can be simplified by expressing the square root of x5x^5 as x52x^{\frac{5}{2}}.\newlineI=x54dxI = \int \frac{\sqrt{x^{5}}}{4} dx\newlineI=x524dxI = \int \frac{x^{\frac{5}{2}}}{4} dx
  2. Rewrite with constant outside: Rewrite the integral with the constant outside.\newlineSince the constant 14\frac{1}{4} does not depend on xx, we can take it outside the integral.\newlineI=(14)x52dxI = \left(\frac{1}{4}\right) \int x^{\frac{5}{2}} \, dx
  3. Apply power rule: Apply the power rule for integration.\newlineThe power rule for integration states that xndx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, where CC is the constant of integration.\newlineI=14x52dxI = \frac{1}{4} \int x^{\frac{5}{2}} \, dx\newlineI=14[x(52+1)(52+1)]+CI = \frac{1}{4} \cdot \left[\frac{x^{\left(\frac{5}{2}+1\right)}}{\left(\frac{5}{2}+1\right)}\right] + C
  4. Simplify expression: Simplify the expression.\newlineNow we simplify the exponent and the fraction.\newlineI=14[x7272]+CI = \frac{1}{4} \cdot \left[\frac{x^{\frac{7}{2}}}{\frac{7}{2}}\right] + C\newlineI=14[27x72]+CI = \frac{1}{4} \cdot \left[\frac{2}{7}x^{\frac{7}{2}}\right] + C\newlineI=114x72+CI = \frac{1}{14}x^{\frac{7}{2}} + C