Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write your answer in simplest form.

int(3sqrt(x^(5)))/(2)dx
Answer:

Calculate the integral and write your answer in simplest form.\newline3x52dx \int \frac{3 \sqrt{x^{5}}}{2} \mathrm{dx} \newlineAnswer:

Full solution

Q. Calculate the integral and write your answer in simplest form.\newline3x52dx \int \frac{3 \sqrt{x^{5}}}{2} \mathrm{dx} \newlineAnswer:
  1. Rewrite integral: Rewrite the integral in a more convenient form for integration.\newlineThe integral of (3x5)/(2)(3\sqrt{x^{5}})/(2) can be rewritten by expressing the square root as a power of 1/21/2.\newlineI=(32)x52dxI = \int(\frac{3}{2})x^{\frac{5}{2}} \, dx
  2. Apply power rule: Apply the power rule for integration.\newlineThe power rule states that xndx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, where CC is the constant of integration.\newlineI=32x52dxI = \frac{3}{2} \int x^{\frac{5}{2}} \, dx\newlineI=32[x52+152+1]+CI = \frac{3}{2} \cdot \left[\frac{x^{\frac{5}{2} + 1}}{\frac{5}{2} + 1}\right] + C
  3. Simplify expression: Simplify the expression.\newlineNow we simplify the exponent and the fraction.\newlineI=32×[x7272]+CI = \frac{3}{2} \times \left[\frac{x^{\frac{7}{2}}}{\frac{7}{2}}\right] + C\newlineI=32×27×x72+CI = \frac{3}{2} \times \frac{2}{7} \times x^{\frac{7}{2}} + C\newlineI=37×x72+CI = \frac{3}{7} \times x^{\frac{7}{2}} + C
  4. Final answer: Write the final answer in simplest form.\newlineThe integral in simplest form is:\newlineI=37x72+CI = \frac{3}{7}x^{\frac{7}{2}} + C