Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write the answer in simplest form.

int(-6x^(2)+3x+2x^(3))dx
Answer:

Calculate the integral and write the answer in simplest form.\newline(6x2+3x+2x3)dx \int\left(-6 x^{2}+3 x+2 x^{3}\right) d x \newlineAnswer:

Full solution

Q. Calculate the integral and write the answer in simplest form.\newline(6x2+3x+2x3)dx \int\left(-6 x^{2}+3 x+2 x^{3}\right) d x \newlineAnswer:
  1. Given integral function: We are given the integral of a polynomial function: (6x2+3x+2x3)dx\int(-6x^2 + 3x + 2x^3)\,dx To solve this, we will integrate each term separately using the power rule for integration, which states that the integral of xnx^n with respect to xx is x(n+1)n+1\frac{x^{(n+1)}}{n+1} for n1n \neq -1.
  2. Integrating 2x32x^3: First, we integrate the term 2x32x^3:(2x3)dx=(24)x(3+1)=(12)x4\int(2x^3)\,dx = \left(\frac{2}{4}\right)x^{(3+1)} = \left(\frac{1}{2}\right)x^4
  3. Integrating 6x2-6x^2: Next, we integrate the term 6x2-6x^2:(6x2)dx=(63)x(2+1)=2x3\int(-6x^2)\,dx = \left(-\frac{6}{3}\right)x^{(2+1)} = -2x^3
  4. Integrating 3x3x: Finally, we integrate the term 3x3x:(3x)dx=(32)x(1+1)=(32)x2\int(3x)\,dx = \left(\frac{3}{2}\right)x^{(1+1)} = \left(\frac{3}{2}\right)x^2
  5. Combining results: Now, we combine the results of the three integrals and add the constant of integration CC: (1/2)x42x3+(3/2)x2+C(1/2)x^4 - 2x^3 + (3/2)x^2 + C