Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write the answer in simplest form.

int(2x^(2)+5x^(5))dx
Answer:

Calculate the integral and write the answer in simplest form.\newline(2x2+5x5)dx \int\left(2 x^{2}+5 x^{5}\right) d x \newlineAnswer:

Full solution

Q. Calculate the integral and write the answer in simplest form.\newline(2x2+5x5)dx \int\left(2 x^{2}+5 x^{5}\right) d x \newlineAnswer:
  1. Given Integral: We are given the integral of a polynomial function: (2x2+5x5)dx\int(2x^2 + 5x^5)\,dx To solve this, we will integrate each term separately using the power rule for integration, which states that xndx=x(n+1)(n+1)\int x^n \,dx = \frac{x^{(n+1)}}{(n+1)} for any real number n1n \neq -1.
  2. Integrating 2x22x^2: First, we integrate the term 2x22x^2:
    2x2dx=2×x2dx=2×(x2+12+1)=2×(x33)=23x3\int 2x^2 dx = 2 \times \int x^2 dx = 2 \times \left(\frac{x^{2+1}}{2+1}\right) = 2 \times \left(\frac{x^3}{3}\right) = \frac{2}{3}x^3
    There is no math error in this step.
  3. Integrating 5x55x^5: Next, we integrate the term 5x55x^5:
    5x5dx=5×x5dx=5×(x5+1/(5+1))=5×(x6/6)=(5/6)x6\int 5x^5 dx = 5 \times \int x^5 dx = 5 \times (x^{5+1}/(5+1)) = 5 \times (x^6/6) = (5/6)x^6
    Again, there is no math error in this step.
  4. Combining Results: Now, we combine the results of the two integrals:\newline(2x2+5x5)dx=23x3+56x6\int(2x^2 + 5x^5)dx = \frac{2}{3}x^3 + \frac{5}{6}x^6\newlineWe add the constant of integration, CC, to represent the indefinite integral:\newline23x3+56x6+C\frac{2}{3}x^3 + \frac{5}{6}x^6 + C\newlineThere is no math error in this step.