Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write the answer in simplest form.

int(6+2x^(-2)-2x)dx
Answer:

Calculate the integral and write the answer in simplest form.\newline(6+2x22x)dx \int\left(6+2 x^{-2}-2 x\right) d x \newlineAnswer:

Full solution

Q. Calculate the integral and write the answer in simplest form.\newline(6+2x22x)dx \int\left(6+2 x^{-2}-2 x\right) d x \newlineAnswer:
  1. Given integral: We are given the integral to solve: \newline(6+2x22x)dx\int(6 + 2x^{-2} - 2x)\,dx\newlineWe will integrate each term separately.
  2. Integrate constant term: First, integrate the constant term 66 with respect to xx: (6)dx=6x\int(6)\,dx = 6x
  3. Integrate term 2x22x^{-2}: Next, integrate the term 2x22x^{-2} with respect to xx: \newline(2x2)dx=2(x2)dx=2(x1)=2x\int(2x^{-2})dx = 2 \cdot \int(x^{-2})dx = 2 \cdot (-x^{-1}) = -\frac{2}{x}
  4. Integrate term 2x-2x: Finally, integrate the term 2x-2x with respect to xx:(2x)dx=2×(x)dx=2×(x22)=x2\int(-2x)\,dx = -2 \times \int(x)\,dx = -2 \times \left(\frac{x^2}{2}\right) = -x^2
  5. Combine integrated terms: Combine all the integrated terms and add the constant of integration CC: 6x2xx2+C6x - \frac{2}{x} - x^2 + C