Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Calculate the integral and write the answer in simplest form.
\newline
∫
(
6
+
2
x
−
2
−
2
x
)
d
x
\int\left(6+2 x^{-2}-2 x\right) d x
∫
(
6
+
2
x
−
2
−
2
x
)
d
x
\newline
Answer:
View step-by-step help
Home
Math Problems
Calculus
Find indefinite integrals using the substitution
Full solution
Q.
Calculate the integral and write the answer in simplest form.
\newline
∫
(
6
+
2
x
−
2
−
2
x
)
d
x
\int\left(6+2 x^{-2}-2 x\right) d x
∫
(
6
+
2
x
−
2
−
2
x
)
d
x
\newline
Answer:
Given integral:
We are given the integral to solve:
\newline
∫
(
6
+
2
x
−
2
−
2
x
)
d
x
\int(6 + 2x^{-2} - 2x)\,dx
∫
(
6
+
2
x
−
2
−
2
x
)
d
x
\newline
We will integrate each term separately.
Integrate constant term:
First, integrate the constant term
6
6
6
with respect to
x
x
x
:
∫
(
6
)
d
x
=
6
x
\int(6)\,dx = 6x
∫
(
6
)
d
x
=
6
x
Integrate term
2
x
−
2
2x^{-2}
2
x
−
2
:
Next, integrate the term
2
x
−
2
2x^{-2}
2
x
−
2
with respect to
x
x
x
:
\newline
∫
(
2
x
−
2
)
d
x
=
2
⋅
∫
(
x
−
2
)
d
x
=
2
⋅
(
−
x
−
1
)
=
−
2
x
\int(2x^{-2})dx = 2 \cdot \int(x^{-2})dx = 2 \cdot (-x^{-1}) = -\frac{2}{x}
∫
(
2
x
−
2
)
d
x
=
2
⋅
∫
(
x
−
2
)
d
x
=
2
⋅
(
−
x
−
1
)
=
−
x
2
Integrate term
−
2
x
-2x
−
2
x
:
Finally, integrate the term
−
2
x
-2x
−
2
x
with respect to
x
x
x
:
∫
(
−
2
x
)
d
x
=
−
2
×
∫
(
x
)
d
x
=
−
2
×
(
x
2
2
)
=
−
x
2
\int(-2x)\,dx = -2 \times \int(x)\,dx = -2 \times \left(\frac{x^2}{2}\right) = -x^2
∫
(
−
2
x
)
d
x
=
−
2
×
∫
(
x
)
d
x
=
−
2
×
(
2
x
2
)
=
−
x
2
Combine integrated terms:
Combine all the integrated terms and add the constant of integration
C
C
C
:
6
x
−
2
x
−
x
2
+
C
6x - \frac{2}{x} - x^2 + C
6
x
−
x
2
−
x
2
+
C
More problems from Find indefinite integrals using the substitution
Question
Evaluate the integral.
\newline
∫
−
x
4
−
3
x
d
x
\int-x 4^{-3 x} d x
∫
−
x
4
−
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
3
e
−
2
x
d
x
\int 6 x^{3} e^{-2 x} d x
∫
6
x
3
e
−
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
x
5
3
x
d
x
\int x 5^{3 x} d x
∫
x
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
e
2
x
d
x
\int-2 x e^{2 x} d x
∫
−
2
x
e
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
cos
(
−
2
x
)
d
x
\int-2 x \cos (-2 x) d x
∫
−
2
x
cos
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
x
cos
(
−
3
x
)
d
x
\int-x \cos (-3 x) d x
∫
−
x
cos
(
−
3
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
5
3
x
d
x
\int 6 x^{2} 5^{3 x} d x
∫
6
x
2
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
6
x
4
−
4
x
d
x
\int-6 x 4^{-4 x} d x
∫
−
6
x
4
−
4
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
2
3
x
d
x
\int 6 x^{2} 2^{3 x} d x
∫
6
x
2
2
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
3
x
sin
(
−
2
x
)
d
x
\int-3 x \sin (-2 x) d x
∫
−
3
x
sin
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant