Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write the answer in simplest form.

int(3x^(4)-2-5x)dx
Answer:

Calculate the integral and write the answer in simplest form.\newline(3x425x)dx \int\left(3 x^{4}-2-5 x\right) d x \newlineAnswer:

Full solution

Q. Calculate the integral and write the answer in simplest form.\newline(3x425x)dx \int\left(3 x^{4}-2-5 x\right) d x \newlineAnswer:
  1. Given Integral: We are given the integral of a polynomial function: (3x425x)dx\int(3x^{4}-2-5x)\,dx To solve this, we will integrate each term separately.
  2. Integrate 3x43x^4: First, integrate the term 3x43x^4 with respect to xx:(3x4)dx=3×(x4)dx=3×(x4+1/(4+1))=3×(x5/5)=(3/5)x5\int(3x^{4})dx = 3 \times \int(x^{4})dx = 3 \times (x^{4+1}/(4+1)) = 3 \times (x^5/5) = (3/5)x^5
  3. Integrate 2-2: Next, integrate the constant term 2-2 with respect to xx:(2)dx=2x\int(-2)\,dx = -2x
  4. Integrate 5x-5x: Finally, integrate the term 5x-5x with respect to xx:(5x)dx=5×(x)dx=5×(x(1+1)(1+1))=5×(x22)=(52)x2\int(-5x)\,dx = -5 \times \int(x)\,dx = -5 \times \left(\frac{x^{(1+1)}}{(1+1)}\right) = -5 \times \left(\frac{x^2}{2}\right) = \left(-\frac{5}{2}\right)x^2
  5. Combine Integrated Terms: Now, combine all the integrated terms to get the final answer: \newline(35)x52x(52)x2+C(\frac{3}{5})x^5 - 2x - (\frac{5}{2})x^2 + C\newlineHere, CC represents the constant of integration.