Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write the answer in simplest form.

int(6x^(4)-6+5x^(5))dx
Answer:

Calculate the integral and write the answer in simplest form.\newline(6x46+5x5)dx \int\left(6 x^{4}-6+5 x^{5}\right) d x \newlineAnswer:

Full solution

Q. Calculate the integral and write the answer in simplest form.\newline(6x46+5x5)dx \int\left(6 x^{4}-6+5 x^{5}\right) d x \newlineAnswer:
  1. Given integral function: We are given the integral of a polynomial function: (6x46+5x5)dx\int(6x^4 - 6 + 5x^5)dx To solve this, we will integrate each term separately using the power rule for integration, which states that xndx=x(n+1)(n+1)\int x^n dx = \frac{x^{(n+1)}}{(n+1)} for any real number n1n \neq -1.
  2. Integrating 6x46x^4: First, we integrate the term 6x46x^4:6x4dx=6×x4dx=6×(x4+14+1)=6×(x55)\int 6x^4 \, dx = 6 \times \int x^4 \, dx = 6 \times \left(\frac{x^{4+1}}{4+1}\right) = 6 \times \left(\frac{x^5}{5}\right)
  3. Integrating 6-6: Next, we integrate the constant term 6-6:\newline(6)dx=6×1dx=6x\int(-6) \, dx = -6 \times \int 1 \, dx = -6x
  4. Integrating 5x55x^5: Finally, we integrate the term 5x55x^5:5x5dx=5×x5dx=5×(x5+15+1)=5×(x66)\int 5x^5 dx = 5 \times \int x^5 dx = 5 \times \left(\frac{x^{5+1}}{5+1}\right) = 5 \times \left(\frac{x^6}{6}\right)
  5. Combining integrations: Now, we combine the results of the integrations and add the constant of integration CC:(6x46+5x5)dx=6×(x55)6x+5×(x66)+C\int(6x^4 - 6 + 5x^5)\,dx = 6 \times \left(\frac{x^5}{5}\right) - 6x + 5 \times \left(\frac{x^6}{6}\right) + C
  6. Simplifying expression: We simplify the expression by multiplying the coefficients: 65x56x+56x6+C\frac{6}{5}x^5 - 6x + \frac{5}{6}x^6 + C
  7. Final answer: The final answer in simplest form is: 65x56x+56x6+C\frac{6}{5}x^5 - 6x + \frac{5}{6}x^6 + C