Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write the answer in simplest form.

int(x^(-2)-4x^(3))dx
Answer:

Calculate the integral and write the answer in simplest form.\newline(x24x3)dx \int\left(x^{-2}-4 x^{3}\right) d x \newlineAnswer:

Full solution

Q. Calculate the integral and write the answer in simplest form.\newline(x24x3)dx \int\left(x^{-2}-4 x^{3}\right) d x \newlineAnswer:
  1. Integrate each term separately: We are given the integral of the function x24x3x^{-2} - 4x^{3}. We will integrate each term separately.\newlineThe integral of x2x^{-2} is x1-x^{-1} or 1x-\frac{1}{x}, and the integral of 4x3-4x^{3} is 4x44-\frac{4x^{4}}{4} or x4-x^{4}.\newlineSo, the integral of the given function is:\newline(x24x3)dx=x2dx4x3dx\int(x^{-2} - 4x^{3})dx = \int x^{-2}dx - \int 4x^{3}dx
  2. Integrate x2x^{-2}: Now we will integrate each term separately.\newlineFor the first term:\newlinex2dx=x2+1/(2+1)dx=x1+C1\int x^{-2}\,dx = \int x^{-2 + 1}/( -2 + 1)\,dx = -x^{-1} + C_1\newlineFor the second term:\newline4x3dx=4x3dx=4(x3+1/(3+1))=x4+C2\int 4x^{3}\,dx = 4\int x^{3}\,dx = 4(x^{3 + 1}/(3 + 1)) = x^{4} + C_2
  3. Integrate 4x3-4x^{3}: Combining the two integrals, we get:\newline(x24x3)dx=x1x4+C\int(x^{-2} - 4x^{3})dx = -x^{-1} - x^{4} + C\newlineWhere CC is the constant of integration, which is a combination of C1C_1 and C2C_2.
  4. Combine the integrals: We can simplify the expression by combining the constants of integration into a single constant, which we will also call CC. So the final answer is: (x24x3)dx=1xx4+C\int(x^{-2} - 4x^{3})dx = -\frac{1}{x} - x^{4} + C