Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write the answer in simplest form.

int(6x^(-3)-5x^(4))dx
Answer:

Calculate the integral and write the answer in simplest form.\newline(6x35x4)dx \int\left(6 x^{-3}-5 x^{4}\right) d x \newlineAnswer:

Full solution

Q. Calculate the integral and write the answer in simplest form.\newline(6x35x4)dx \int\left(6 x^{-3}-5 x^{4}\right) d x \newlineAnswer:
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to find the indefinite integral of the function 6x35x46x^{-3}-5x^{4} with respect to xx.
  2. Apply Power Rule: Apply the power rule for integration to each term separately.\newlineThe power rule for integration states that xndx=x(n+1)(n+1)+C\int x^n \, dx = \frac{x^{(n+1)}}{(n+1)} + C, where n1n \neq -1.\newlineFor the first term, 6x36x^{-3}, we add 11 to the exponent and divide by the new exponent.\newlineFor the second term, 5x4-5x^{4}, we also add 11 to the exponent and divide by the new exponent.
  3. Integrate 6x36x^{-3}: Integrate the first term, 6x36x^{-3}.6x3dx=6×x3dx=6×x3+13+1=6×x22=3x2+C1\int 6x^{-3} dx = 6 \times \int x^{-3} dx = 6 \times \frac{x^{-3+1}}{-3+1} = 6 \times \frac{x^{-2}}{-2} = -3x^{-2} + C_1
  4. Integrate 5x4-5x^{4}: Integrate the second term, 5x4-5x^{4}.5x4dx=5×x4dx=5×x4+14+1=5×x55=x5+C2\int -5x^{4} dx = -5 \times \int x^{4} dx = -5 \times \frac{x^{4+1}}{4+1} = -5 \times \frac{x^{5}}{5} = -x^{5} + C_{2}
  5. Combine Integrals: Combine the results of the two integrals.\newlineSince the integral of a sum is the sum of the integrals, we add the results from Step 33 and Step 44.\newline3x2x5+C1+C2-3x^{-2} - x^{5} + C_{1} + C_{2}\newlineWe can combine the constants C1C_{1} and C2C_{2} into a single constant CC because the sum of two arbitrary constants is also an arbitrary constant.\newline3x2x5+C-3x^{-2} - x^{5} + C
  6. Write Final Answer: Write the final answer in simplest form.\newlineThe simplest form of the integral is 3x2x5+C-3x^{-2} - x^{5} + C.