Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write the answer in simplest form.

int(6x^(3)+5-x^(-3))dx
Answer:

Calculate the integral and write the answer in simplest form.\newline(6x3+5x3)dx \int\left(6 x^{3}+5-x^{-3}\right) d x \newlineAnswer:

Full solution

Q. Calculate the integral and write the answer in simplest form.\newline(6x3+5x3)dx \int\left(6 x^{3}+5-x^{-3}\right) d x \newlineAnswer:
  1. Given Integral: We are given the integral of a polynomial function with a negative exponent term: (6x3+5x3)dx\int(6x^{3} + 5 - x^{-3})dx To solve this, we will integrate each term separately.
  2. Integrating 6x36x^3: First, we integrate the term 6x36x^3:(6x3)dx=6×(x3)dx=6×(x3+13+1)=6×(x44)=(32)x4\int(6x^{3})dx = 6 \times \int(x^{3})dx = 6 \times \left(\frac{x^{3+1}}{3+1}\right) = 6 \times \left(\frac{x^4}{4}\right) = \left(\frac{3}{2}\right)x^4
  3. Integrating Constant Term: Next, we integrate the constant term 55: (5)dx=5×(1)dx=5x\int(5)\,dx = 5 \times \int(1)\,dx = 5x
  4. Integrating x3-x^{-3}: Finally, we integrate the term x3-x^{-3}:(x3)dx=(x3)dx=(x3+13+1)=(x22)=(12)x2=(12)x2\int(-x^{-3})dx = -\int(x^{-3})dx = - \left(\frac{x^{-3+1}}{-3+1}\right) = - \left(\frac{x^{-2}}{-2}\right) = \left(\frac{1}{2}\right)x^{-2} = \left(\frac{1}{2}\right)x^{-2}
  5. Combining Integrated Terms: Now, we combine all the integrated terms and add the constant of integration CC: \newline(32)x4+5x+(12)x2+C\left(\frac{3}{2}\right)x^4 + 5x + \left(\frac{1}{2}\right)x^{-2} + C