Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write the answer in simplest form.

int(3+6x^(-3))dx
Answer:

Calculate the integral and write the answer in simplest form.\newline(3+6x3)dx \int\left(3+6 x^{-3}\right) d x \newlineAnswer:

Full solution

Q. Calculate the integral and write the answer in simplest form.\newline(3+6x3)dx \int\left(3+6 x^{-3}\right) d x \newlineAnswer:
  1. Identify integral: Identify the integral to be solved.\newlineWe need to find the indefinite integral of the function 3+6x33 + 6x^{-3} with respect to xx.\newlineThe integral is written as (3+6x3)dx\int(3 + 6x^{-3})dx.
  2. Break down parts: Break down the integral into simpler parts.\newlineThe integral of a sum is the sum of the integrals, so we can write:\newline(3+6x3)dx=3dx+6x3dx\int(3 + 6x^{-3})dx = \int 3dx + \int 6x^{-3}dx.
  3. Integrate constant: Integrate the constant term.\newlineThe integral of a constant 33 with respect to xx is 3x3x.\newlineSo, 3dx=3x\int 3\,dx = 3x.
  4. Integrate term: Integrate the term 6x36x^{-3}. The integral of 6x36x^{-3} with respect to xx is 66 times the integral of x3x^{-3} with respect to xx. Using the power rule for integration, xndx=xn+1n+1\int x^n \, dx = \frac{x^{n+1}}{n+1} for n1n \neq -1, we get: 6x3dx=6×(x3+13+1)=6×(x22)=3x2\int 6x^{-3}\,dx = 6 \times \left(\frac{x^{-3+1}}{-3+1}\right) = 6 \times \left(\frac{x^{-2}}{-2}\right) = -3x^{-2}.
  5. Combine and add: Combine the results and add the constant of integration.\newlineCombining the results from steps 33 and 44, we get:\newline(3+6x3)dx=3x3x2+C\int(3 + 6x^{-3})dx = 3x - 3x^{-2} + C.
  6. Simplify result: Simplify the result.\newlineThe integral in its simplest form is:\newline3x3x2+C3x - \frac{3}{x^2} + C.