Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write the answer in simplest form.

int(x^(-2)+3x^(3))dx
Answer:

Calculate the integral and write the answer in simplest form.\newline(x2+3x3)dx \int\left(x^{-2}+3 x^{3}\right) d x \newlineAnswer:

Full solution

Q. Calculate the integral and write the answer in simplest form.\newline(x2+3x3)dx \int\left(x^{-2}+3 x^{3}\right) d x \newlineAnswer:
  1. Identify Integrals: We are given the integral of the function x2+3x3x^{-2} + 3x^{3}. We will integrate each term separately.\newlineThe integral of x2x^{-2} is x1-x^{-1} or 1x-\frac{1}{x}, and the integral of 3x33x^{3} is 34x4\frac{3}{4}x^{4}.
  2. Integrate Each Term: Now we will write down the integral of each term and add the constant of integration CC. The integral of x2+3x3x^{-2} + 3x^{3} with respect to xx is: (x2+3x3)dx=x2dx+3x3dx=1x+34x4+C\int(x^{-2} + 3x^{3})dx = \int x^{-2}dx + \int 3x^{3}dx = -\frac{1}{x} + \frac{3}{4}x^{4} + C