Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Calculate the integral and write the answer in simplest form.
\newline
∫
(
−
x
−
3
−
6
)
d
x
\int\left(-x^{-3}-6\right) d x
∫
(
−
x
−
3
−
6
)
d
x
\newline
Answer:
View step-by-step help
Home
Math Problems
Calculus
Find indefinite integrals using the substitution and by parts
Full solution
Q.
Calculate the integral and write the answer in simplest form.
\newline
∫
(
−
x
−
3
−
6
)
d
x
\int\left(-x^{-3}-6\right) d x
∫
(
−
x
−
3
−
6
)
d
x
\newline
Answer:
Write Integral:
Write down the integral to be solved.
\newline
I
=
∫
(
−
x
−
3
−
6
)
d
x
I = \int(-x^{-3} - 6)\,dx
I
=
∫
(
−
x
−
3
−
6
)
d
x
Split Integral:
Split the integral into two separate integrals.
I
=
∫
(
−
x
−
3
)
d
x
−
∫
(
6
)
d
x
I = \int(-x^{-3})\,dx - \int(6)\,dx
I
=
∫
(
−
x
−
3
)
d
x
−
∫
(
6
)
d
x
Integrate First Term:
Integrate the first term
∫
(
−
x
−
3
)
d
x
\int(-x^{-3})\,dx
∫
(
−
x
−
3
)
d
x
.
I
1
=
∫
(
−
x
−
3
)
d
x
=
−
∫
(
x
−
3
)
d
x
=
−
1
2
⋅
x
−
2
=
−
1
2
x
2
I_1 = \int(-x^{-3})\,dx = -\int(x^{-3})\,dx = -\frac{1}{2} \cdot x^{-2} = -\frac{1}{2x^2}
I
1
=
∫
(
−
x
−
3
)
d
x
=
−
∫
(
x
−
3
)
d
x
=
−
2
1
⋅
x
−
2
=
−
2
x
2
1
Integrate Second Term:
Integrate the second term
∫
(
6
)
d
x
\int(6)\,dx
∫
(
6
)
d
x
.
I
2
=
∫
(
6
)
d
x
=
6
x
I_2 = \int(6)\,dx = 6x
I
2
=
∫
(
6
)
d
x
=
6
x
Combine Results:
Combine the results of the two integrals and add the constant of integration
C
C
C
.
I
=
I
1
+
I
2
+
C
I = I_1 + I_2 + C
I
=
I
1
+
I
2
+
C
I
=
−
1
2
x
2
+
6
x
+
C
I = -\frac{1}{2x^2} + 6x + C
I
=
−
2
x
2
1
+
6
x
+
C
Final Answer:
Write the final answer in simplest form.
\newline
The indefinite integral of the function
−
x
−
3
−
6
-x^{-3} - 6
−
x
−
3
−
6
with respect to
x
x
x
is
−
1
2
x
2
+
6
x
+
C
-\frac{1}{2x^2} + 6x + C
−
2
x
2
1
+
6
x
+
C
.
More problems from Find indefinite integrals using the substitution and by parts
Question
Evaluate the integral.
\newline
∫
−
x
4
−
3
x
d
x
\int-x 4^{-3 x} d x
∫
−
x
4
−
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
3
e
−
2
x
d
x
\int 6 x^{3} e^{-2 x} d x
∫
6
x
3
e
−
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
x
5
3
x
d
x
\int x 5^{3 x} d x
∫
x
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
e
2
x
d
x
\int-2 x e^{2 x} d x
∫
−
2
x
e
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
cos
(
−
2
x
)
d
x
\int-2 x \cos (-2 x) d x
∫
−
2
x
cos
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
x
cos
(
−
3
x
)
d
x
\int-x \cos (-3 x) d x
∫
−
x
cos
(
−
3
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
5
3
x
d
x
\int 6 x^{2} 5^{3 x} d x
∫
6
x
2
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
6
x
4
−
4
x
d
x
\int-6 x 4^{-4 x} d x
∫
−
6
x
4
−
4
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
2
3
x
d
x
\int 6 x^{2} 2^{3 x} d x
∫
6
x
2
2
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
3
x
sin
(
−
2
x
)
d
x
\int-3 x \sin (-2 x) d x
∫
−
3
x
sin
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant