Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write the answer in simplest form.

int(-x^(-3)-6)dx
Answer:

Calculate the integral and write the answer in simplest form.\newline(x36)dx \int\left(-x^{-3}-6\right) d x \newlineAnswer:

Full solution

Q. Calculate the integral and write the answer in simplest form.\newline(x36)dx \int\left(-x^{-3}-6\right) d x \newlineAnswer:
  1. Write Integral: Write down the integral to be solved.\newlineI=(x36)dxI = \int(-x^{-3} - 6)\,dx
  2. Split Integral: Split the integral into two separate integrals. I=(x3)dx(6)dxI = \int(-x^{-3})\,dx - \int(6)\,dx
  3. Integrate First Term: Integrate the first term (x3)dx\int(-x^{-3})\,dx.I1=(x3)dx=(x3)dx=12x2=12x2I_1 = \int(-x^{-3})\,dx = -\int(x^{-3})\,dx = -\frac{1}{2} \cdot x^{-2} = -\frac{1}{2x^2}
  4. Integrate Second Term: Integrate the second term (6)dx\int(6)\,dx.I2=(6)dx=6xI_2 = \int(6)\,dx = 6x
  5. Combine Results: Combine the results of the two integrals and add the constant of integration CC.I=I1+I2+CI = I_1 + I_2 + CI=12x2+6x+CI = -\frac{1}{2x^2} + 6x + C
  6. Final Answer: Write the final answer in simplest form.\newlineThe indefinite integral of the function x36-x^{-3} - 6 with respect to xx is 12x2+6x+C-\frac{1}{2x^2} + 6x + C.