Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write the answer in simplest form.

int(2x^(2)-3x^(4)+5x^(-3))dx
Answer:

Calculate the integral and write the answer in simplest form.\newline(2x23x4+5x3)dx \int\left(2 x^{2}-3 x^{4}+5 x^{-3}\right) d x \newlineAnswer:

Full solution

Q. Calculate the integral and write the answer in simplest form.\newline(2x23x4+5x3)dx \int\left(2 x^{2}-3 x^{4}+5 x^{-3}\right) d x \newlineAnswer:
  1. Given Integral: We are given the integral of a polynomial function: (2x23x4+5x3)dx\int(2x^2 - 3x^4 + 5x^{-3})dx To solve this, we will integrate each term separately using the power rule for integration, which states that the integral of xnx^n with respect to xx is (x(n+1))/(n+1)(x^{(n+1)})/(n+1) for n1n \neq -1.
  2. Integrating 2x22x^2: First, we integrate the term 2x22x^2:
    (2x2)dx=2×(x2)dx=2×x2+12+1=23x3\int(2x^2)dx = 2 \times \int(x^2)dx = 2 \times \frac{x^{2+1}}{2+1} = \frac{2}{3}x^3
  3. Integrating 3x4-3x^4: Next, we integrate the term 3x4-3x^4:(3x4)dx=3×(x4)dx=3×x4+14+1=(35)x5\int(-3x^4)dx = -3 \times \int(x^4)dx = -3 \times \frac{x^{4+1}}{4+1} = \left(-\frac{3}{5}\right)x^5
  4. Integrating 5x35x^{-3}: Finally, we integrate the term 5x35x^{-3}:(5x3)dx=5×(x3)dx=5×x3+13+1=5×x22=52×x2\int(5x^{-3})dx = 5 \times \int(x^{-3})dx = 5 \times \frac{x^{-3+1}}{-3+1} = 5 \times \frac{x^{-2}}{-2} = -\frac{5}{2} \times x^{-2}
  5. Combining Integrated Terms: Now, we combine all the integrated terms and add the constant of integration CC:
    Integral = 23x335x552x2+C\frac{2}{3}x^3 - \frac{3}{5}x^5 - \frac{5}{2}x^{-2} + C