Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


int(x^(2)+2x+100)e^(-3x)dx=

(x2+2x+100)e3xdx \int\left(x^{2}+2 x+100\right) e^{-3 x} d x =

Full solution

Q. (x2+2x+100)e3xdx \int\left(x^{2}+2 x+100\right) e^{-3 x} d x =
  1. Identify integral: Identify the integral to be solved.\newlineWe need to find the integral of the function (x2+2x+100)e3x(x^2 + 2x + 100)e^{-3x} with respect to xx.
  2. Apply integration by parts: Apply integration by parts.\newlineIntegration by parts formula is udv=uvvdu\int u \, dv = uv - \int v \, du.\newlineLet u=x2+2x+100u = x^2 + 2x + 100, which means du=(2x+2)dxdu = (2x + 2)dx.\newlineLet dv=e3xdxdv = e^{-3x}dx, which means v=13e3xv = -\frac{1}{3} e^{-3x}.
  3. Perform first integration: Perform the first integration by parts.\newlineUsing the formula, we get:\newline(x2+2x+100)e3xdx=(x2+2x+100)(13e3x)(13e3x)(2x+2)dx\int(x^2 + 2x + 100)e^{-3x}\,dx = (x^2 + 2x + 100)(-\frac{1}{3} e^{-3x}) - \int(-\frac{1}{3} e^{-3x})(2x + 2)\,dx
  4. Simplify expression: Simplify the expression.\newline=(13)(x2+2x+100)e3x+(23)(x+1)e3xdx= -(\frac{1}{3})(x^2 + 2x + 100)e^{-3x} + (\frac{2}{3})\int(x + 1)e^{-3x}dx\newlineNow we need to integrate (x+1)e3x(x + 1)e^{-3x} with respect to xx.
  5. Apply integration by parts again: Apply integration by parts again for the remaining integral.\newlineLet u=x+1u = x + 1, which means du=dxdu = dx.\newlineLet dv=e3xdxdv = e^{-3x}dx, which means v=13e3xv = -\frac{1}{3} e^{-3x}.
  6. Perform second integration: Perform the second integration by parts.\newline(x+1)e3xdx=(x+1)(13e3x)(13e3x)(1)dx\int(x + 1)e^{-3x}dx = (x + 1)(-\frac{1}{3} e^{-3x}) - \int(-\frac{1}{3} e^{-3x})(1)dx
  7. Integrate e3xe^{-3x}: Simplify the expression.\newline=13(x+1)e3x+13e3xdx= -\frac{1}{3}(x + 1)e^{-3x} + \frac{1}{3}\int e^{-3x}\,dx\newlineNow we need to integrate e3xe^{-3x} with respect to xx.
  8. Combine all parts: Integrate e3xe^{-3x} with respect to xx.
    e3xdx=13e3x+C\int e^{-3x}\,dx = -\frac{1}{3} e^{-3x} + C, where CC is the constant of integration.
  9. Simplify final expression: Combine all parts together.\newlinePutting it all together, we have:\newline(x2+2x+100)e(3x)dx=(13)(x2+2x+100)e(3x)+(23)((13)(x+1)e(3x)+(13)e(3x)dx)\int(x^2 + 2x + 100)e^{(-3x)}dx = -(\frac{1}{3})(x^2 + 2x + 100)e^{(-3x)} + (\frac{2}{3})(-(\frac{1}{3})(x + 1)e^{(-3x)} + (\frac{1}{3})\int e^{(-3x)}dx)\newline=(13)(x2+2x+100)e(3x)(29)(x+1)e(3x)(29)(13e(3x))+C= -(\frac{1}{3})(x^2 + 2x + 100)e^{(-3x)} - (\frac{2}{9})(x + 1)e^{(-3x)} - (\frac{2}{9})(-\frac{1}{3} e^{(-3x)}) + C
  10. Simplify final expression: Combine all parts together.\newlinePutting it all together, we have:\newline(x2+2x+100)e3xdx=(13)(x2+2x+100)e3x+(23)((13)(x+1)e3x+(13)e3xdx)\int(x^2 + 2x + 100)e^{-3x}\,dx = -(\frac{1}{3})(x^2 + 2x + 100)e^{-3x} + (\frac{2}{3})(-(\frac{1}{3})(x + 1)e^{-3x} + (\frac{1}{3})\int e^{-3x}\,dx)\newline=(13)(x2+2x+100)e3x(29)(x+1)e3x(29)(13e3x)+C= -(\frac{1}{3})(x^2 + 2x + 100)e^{-3x} - (\frac{2}{9})(x + 1)e^{-3x} - (\frac{2}{9})(-\frac{1}{3} e^{-3x}) + C Simplify the final expression.\newline=(13)(x2+2x+100)e3x(29)(x+1)e3x+(227)e3x+C= -(\frac{1}{3})(x^2 + 2x + 100)e^{-3x} - (\frac{2}{9})(x + 1)e^{-3x} + (\frac{2}{27})e^{-3x} + C\newline=e3x(13x2+23x+1003+29x+29227)+C= -e^{-3x}(\frac{1}{3} x^2 + \frac{2}{3} x + \frac{100}{3} + \frac{2}{9} x + \frac{2}{9} - \frac{2}{27}) + C\newline=e3x(13x2+89x+29827)+C= -e^{-3x}(\frac{1}{3} x^2 + \frac{8}{9} x + \frac{298}{27}) + C