Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


20:16 A X 
9=
(1) 以ล
Jo Skyscanner
Guwahati to Shillong
from Rs696
View
PREVIOUS
NEXT
MHT CET 2021 22th September Evening Shift
1
MCQ (Single Correct Answer)

+2

-0
(4)
The particular solution of the differential equation 
(dy)/(dx)=(y+1)/(x^(2)-x), when 
x=2 and 
y=1 is
A) 
xy=4x-6
B 
xy=2x-2
Correct Answer
c) 
xy=x-2
D 
xy=-x+4

The particular solution of the differential equation \newlinedydx=y+1x2x\frac{dy}{dx}=\frac{y+1}{x^{2}-x}, when \newlinex=2x=2 and \newliney=1y=1 is\newlineA) xy=4x6xy=4x-6\newlineB) xy=2x2xy=2x-2\newlineC) xy=x2xy=x-2\newlineD) xy=x+4xy=-x+4

Full solution

Q. The particular solution of the differential equation \newlinedydx=y+1x2x\frac{dy}{dx}=\frac{y+1}{x^{2}-x}, when \newlinex=2x=2 and \newliney=1y=1 is\newlineA) xy=4x6xy=4x-6\newlineB) xy=2x2xy=2x-2\newlineC) xy=x2xy=x-2\newlineD) xy=x+4xy=-x+4
  1. Given Differential Equation: Given the differential equation dydx=y+1x2x\frac{dy}{dx} = \frac{y+1}{x^2 - x} and the initial condition x=2x=2, y=1y=1. We need to find the particular solution that fits this condition.
  2. Simplify Equation: Simplify the differential equation by factoring the denominator: dydx=y+1(x1)x\frac{dy}{dx} = \frac{y+1}{(x-1)x}.
  3. Apply Initial Condition: Use the initial condition to plug in x=2x=2 and y=1y=1 into the equation: (1+1)((21)2)=22=1\frac{(1+1)}{((2-1)2)} = \frac{2}{2} = 1. This confirms that the slope at x=2x=2, y=1y=1 is 11.
  4. Integrate Differential Equation: To find the particular solution, we need to integrate the differential equation. We can separate variables and integrate: dyy+1=dxx(x1)\int \frac{dy}{y+1} = \int \frac{dx}{x(x-1)}.
  5. Exponentiate to Solve for y: Integrate both sides: lny+1=lnxlnx1+C\ln|y+1| = \ln|x| - \ln|x-1| + C, where CC is the integration constant.
  6. Find Integration Constant: Exponentiate both sides to solve for yy: y+1=Cx/(x1)y+1 = C\cdot x/(x-1).
  7. Substitute for Particular Solution: Use the initial condition (x=2,y=1)(x=2, y=1) to find CC: 1+1=C2(21)1+1 = C\cdot\frac{2}{(2-1)}, so C=1C = 1.
  8. Finalize Solution: Substitute CC back into the equation: y+1=xx1y+1 = \frac{x}{x-1}. Solve for yy: y=xx11=xx+1x1=1x1y = \frac{x}{x-1} - 1 = \frac{x-x+1}{x-1} = \frac{1}{x-1}.
  9. Rewrite in Terms of x: Rewrite yy in terms of xx to match the answer choices: y=1x1y = \frac{1}{x-1}. Multiply both sides by xx: xy=xx1xy = \frac{x}{x-1}.
  10. Simplify the Expression: Simplify the expression: xy=xx1=xx1x1x1=xx1xy = \frac{x}{x-1} = \frac{x}{x-1} \cdot \frac{x-1}{x-1} = \frac{x}{x-1}. This simplifies to xy=x1xy = x - 1.

More problems from Euler's method