Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(16x20)dx4x212x+10\int \frac{(16x-20)\,dx}{4x^{2}-12x+10}

Full solution

Q. (16x20)dx4x212x+10\int \frac{(16x-20)\,dx}{4x^{2}-12x+10}
  1. Given Integral Simplification: We are given the integral: (16x20)dx4x212x+10\int\frac{(16x - 20)\,dx}{4x^2 - 12x + 10} First, we should try to simplify the denominator if possible and see if we can factor it. The denominator is a quadratic expression, so we can attempt to factor it by completing the square or using the quadratic formula.
  2. Completing the Square: The quadratic expression in the denominator is:\newline4x212x+104x^2 - 12x + 10\newlineTo complete the square, we can factor out the 44 from the first two terms to get:\newline4(x23x)+104(x^2 - 3x) + 10\newlineNow, we need to add and subtract the square of half the coefficient of xx inside the parentheses, which is (3/2)2=9/4(3/2)^2 = 9/4.\newline4(x23x+9/49/4)+104(x^2 - 3x + 9/4 - 9/4) + 10\newline4(x3/2)24(9/4)+104(x - 3/2)^2 - 4(9/4) + 10\newline4(x3/2)29+104(x - 3/2)^2 - 9 + 10\newline4(x3/2)2+14(x - 3/2)^2 + 1\newlineNow we have the denominator in the form of a perfect square plus a constant.
  3. Substitution for Simplification: Next, we can rewrite the integral with the simplified denominator: \newline(16x20)dx4(x32)2+1\int\frac{(16x - 20)\,dx}{4(x - \frac{3}{2})^2 + 1}\newlineNow, we should look for a substitution that will simplify the integral. A good substitution would be to let uu equal the expression inside the square, i.e., u=x32u = x - \frac{3}{2}.
  4. Performing Substitution: Let's perform the substitution:\newlineu=x32u = x - \frac{3}{2}\newlineThen, du=dxdu = dx, since the derivative of xx with respect to xx is 11 and the derivative of a constant is 00.\newlineNow we need to express the numerator 16x2016x - 20 in terms of uu. To do this, we solve for xx in terms of uu:\newlinedu=dxdu = dx00
  5. Splitting into Two Integrals: Substitute xx in the numerator: 16x20=16(u+32)2016x - 20 = 16(u + \frac{3}{2}) - 20 =16u+2420= 16u + 24 - 20 =16u+4= 16u + 4 Now we can rewrite the integral in terms of uu: (16u+4)du4u2+1\int\frac{(16u + 4)\,du}{4u^2 + 1}
  6. First Integral Simplification: We can split the integral into two separate integrals: \newline16udu4u2+1+4du4u2+1\int\frac{16u \, du}{4u^2 + 1} + \int\frac{4 \, du}{4u^2 + 1}\newlineNow, we can simplify each integral further. For the first integral, we can factor out constants and for the second integral, we can use a standard integral formula.
  7. Second Integral Simplification: The first integral becomes: \newline44udu4u2+14\int\frac{4u \, du}{4u^2 + 1}\newlineWe can factor out the 44 from the numerator and cancel it with the 44 in the denominator:\newline4udu4u2+1=uduu2+(14)\int\frac{4u \, du}{4u^2 + 1} = \int\frac{u \, du}{u^2 + (\frac{1}{4})}
  8. Integrating Both Parts: The second integral is a standard form:\newline4du4u2+1\int\frac{4\,du}{4u^2 + 1}\newlineWe can factor out the 44 from the denominator:\newline4du4(u2+(1/4))\int\frac{4\,du}{4(u^2 + (1/4))}\newline= duu2+(1/4)\int\frac{du}{u^2 + (1/4)}\newlineThis is the integral of the form duu2+a2\int\frac{du}{u^2 + a^2}, which has a standard result of (1/a)arctan(u/a)+C(1/a)\arctan(u/a) + C.
  9. Final Result Substitution: Now we integrate both parts:\newlineFor the first integral, we have:\newlineuduu2+(14)=12lnu2+(14)+C1\int\frac{u \, du}{u^2 + (\frac{1}{4})} = \frac{1}{2}\ln|u^2 + (\frac{1}{4})| + C_1\newlineFor the second integral, we have:\newlineduu2+(14)=2arctan(2u)+C2\int\frac{du}{u^2 + (\frac{1}{4})} = 2\arctan(2u) + C_2
  10. Final Result Substitution: Now we integrate both parts:\newlineFor the first integral, we have:\newlineuduu2+(14)=12lnu2+(14)+C1\int\frac{u \, du}{u^2 + (\frac{1}{4})} = \frac{1}{2}\ln|u^2 + (\frac{1}{4})| + C_1\newlineFor the second integral, we have:\newlineduu2+(14)=2arctan(2u)+C2\int\frac{du}{u^2 + (\frac{1}{4})} = 2\arctan(2u) + C_2Combining both integrals, we get the final result:\newline12lnu2+(14)+2arctan(2u)+C\frac{1}{2}\ln|u^2 + (\frac{1}{4})| + 2\arctan(2u) + C\newlineNow we need to substitute back for uu to get the result in terms of xx:\newlineu=x32u = x - \frac{3}{2}
  11. Final Result Substitution: Now we integrate both parts:\newlineFor the first integral, we have:\newlineuduu2+(1/4)=12lnu2+(1/4)+C1\int\frac{u \, du}{u^2 + (1/4)} = \frac{1}{2}\ln|u^2 + (1/4)| + C_1\newlineFor the second integral, we have:\newlineduu2+(1/4)=2arctan(2u)+C2\int\frac{du}{u^2 + (1/4)} = 2\arctan(2u) + C_2 Combining both integrals, we get the final result:\newline12lnu2+(1/4)+2arctan(2u)+C\frac{1}{2}\ln|u^2 + (1/4)| + 2\arctan(2u) + C\newlineNow we need to substitute back for uu to get the result in terms of xx:\newlineu=x32u = x - \frac{3}{2} Substituting back, we get:\newline12ln(x32)2+(1/4)+2arctan(2(x32))+C\frac{1}{2}\ln|\left(x - \frac{3}{2}\right)^2 + (1/4)| + 2\arctan\left(2\left(x - \frac{3}{2}\right)\right) + C\newlineThis is the indefinite integral of the given function.