Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

12c2+3c=1\frac{1}{2}c^{2}+3c=1\newlineLet c=fc=f and c=gc=g be the solutions to the given equation. If f > g, which of the following is the value of ff?\newlineChoose 11 answer:\newline(A) 3+2-3+\sqrt{2}\newline(B) 3+11-3+\sqrt{11}\newline(C) 3+23+\sqrt{2}\newline(D) 3+113+\sqrt{11}

Full solution

Q. 12c2+3c=1\frac{1}{2}c^{2}+3c=1\newlineLet c=fc=f and c=gc=g be the solutions to the given equation. If f>gf > g, which of the following is the value of ff?\newlineChoose 11 answer:\newline(A) 3+2-3+\sqrt{2}\newline(B) 3+11-3+\sqrt{11}\newline(C) 3+23+\sqrt{2}\newline(D) 3+113+\sqrt{11}
  1. Rewrite Equation: Rewrite the given equation in standard quadratic form.\newlineThe given equation is (12)c2+3c=1(\frac{1}{2})c^{2} + 3c = 1. To rewrite it in standard form, we need to have 00 on one side of the equation.\newline(12)c2+3c1=0(\frac{1}{2})c^{2} + 3c - 1 = 0\newlineMultiply through by 22 to get rid of the fraction:\newlinec2+6c2=0c^{2} + 6c - 2 = 0
  2. Use Quadratic Formula: Use the quadratic formula to find the solutions for cc. The quadratic formula is c=b±b24ac2ac = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=1a = 1, b=6b = 6, and c=2c = -2 in our equation. c=6±624(1)(2)2(1)c = \frac{-6 \pm \sqrt{6^2 - 4(1)(-2)}}{2(1)} c=6±36+82c = \frac{-6 \pm \sqrt{36 + 8}}{2} c=6±442c = \frac{-6 \pm \sqrt{44}}{2} c=6±4112c = \frac{-6 \pm \sqrt{4 \cdot 11}}{2} c=6±2112c = \frac{-6 \pm 2\sqrt{11}}{2} c=b±b24ac2ac = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}00
  3. Find Solutions: Determine the two solutions for cc. The two solutions are: c=f=3+11c = f = -3 + \sqrt{11} c=g=311c = g = -3 - \sqrt{11} Since f > g, we choose the solution with the positive square root.
  4. Choose Correct Answer: Choose the correct answer from the given options.\newlineThe value of ff is 3+11-3 + \sqrt{11}, which matches option (B)(B).

More problems from Euler's method