Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write an exponential function in the form 
y=ab^(x) that goes through the points 
(0,19) and 
(3,6517).
Answer:

Write an exponential function in the form y=abx y=a b^{x} that goes through the points (0,19) (0,19) and (3,6517) (3,6517) .\newlineAnswer:

Full solution

Q. Write an exponential function in the form y=abx y=a b^{x} that goes through the points (0,19) (0,19) and (3,6517) (3,6517) .\newlineAnswer:
  1. Find 'a' value: Use the point (0,19)(0,19) to find the value of 'a'.\newlineSince the point (0,19)(0,19) lies on the graph of the function, we can substitute x=0x=0 and y=19y=19 into the equation y=abxy=ab^{x} to find 'a'.\newliney=ab0y = ab^{0}\newline19=ab019 = a \cdot b^0\newlineSince any number raised to the power of 00 is 11, we have:\newline19=a119 = a \cdot 1\newlineTherefore, (0,19)(0,19)00.
  2. Find 'b' value: Use the point (3,6517)(3,6517) to find the value of 'b'.\newlineNow that we know 'a', we can substitute x=3x=3, y=6517y=6517, and a=19a=19 into the equation to solve for 'b'.\newline6517=19×b36517 = 19 \times b^{3}\newlineTo isolate bb, we divide both sides by 1919:\newline651719=b3\frac{6517}{19} = b^{3}\newline343=b3343 = b^{3}\newlineTo find bb, we take the cube root of both sides:\newlinex=3x=300\newlinex=3x=311
  3. Write final exponential function: Write the final exponential function.\newlineNow that we have both aa and bb, we can write the exponential function:\newliney=abxy = ab^{x}\newliney=19×7xy = 19 \times 7^{x}\newlineThis is the exponential function that goes through the points (0,19)(0,19) and (3,6517)(3,6517).

More problems from Solve multi-variable equations