Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(1)/(2)c^(2)+3c=1
Let 
c=f and 
c=g be the solutions to the given equation. If 
f > g, which of the following is the value of 
f ?
Choose 1 answer:
(A) 
-3+sqrt2
(B) 
-3+sqrt11
(c) 
3+sqrt2
(D) 
3+sqrt11

12c2+3c=1 \frac{1}{2} c^{2}+3 c=1 \newlineLet c=f c=f and c=g c=g be the solutions to the given equation. If f>g , which of the following is the value of f f ?\newlineChoose 11 answer:\newline(A) 3+2 -3+\sqrt{2} \newline(B) 3+11 -3+\sqrt{11} \newline(C) 3+2 3+\sqrt{2} \newline(D) 3+11 3+\sqrt{11}

Full solution

Q. 12c2+3c=1 \frac{1}{2} c^{2}+3 c=1 \newlineLet c=f c=f and c=g c=g be the solutions to the given equation. If f>g f>g , which of the following is the value of f f ?\newlineChoose 11 answer:\newline(A) 3+2 -3+\sqrt{2} \newline(B) 3+11 -3+\sqrt{11} \newline(C) 3+2 3+\sqrt{2} \newline(D) 3+11 3+\sqrt{11}
  1. Set Equation to Zero: Given the quadratic equation (1)/(2)c2+3c=1(1)/(2)c^{2} + 3c = 1, we first need to bring all terms to one side to set the equation to zero.\newline(1)/(2)c2+3c1=0(1)/(2)c^{2} + 3c - 1 = 0\newlineMultiply through by 22 to clear the fraction:\newlinec2+6c2=0c^{2} + 6c - 2 = 0
  2. Use Quadratic Formula: Now we use the quadratic formula to solve for cc:c=b±b24ac2ac = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}Here, a=1a = 1, b=6b = 6, and c=2c = -2.
  3. Calculate Discriminant: Calculate the discriminant (b24ac)(b^2 - 4ac):Discriminant=(6)24(1)(2)=36+8=44\text{Discriminant} = (6)^2 - 4(1)(-2) = 36 + 8 = 44
  4. Plug Values into Formula: Now plug the values into the quadratic formula:\newlinec = [6±44-6 \pm \sqrt{44}] / 22\newlinec = [6±4×11-6 \pm \sqrt{4 \times 11}] / 22\newlinec = [6±211-6 \pm 2\sqrt{11}] / 22\newlinec = 3±11-3 \pm \sqrt{11}
  5. Find Solutions: We have two solutions for cc:c=3+11c = -3 + \sqrt{11} and c=311c = -3 - \sqrt{11}Since f > g, we choose the larger solution for ff.
  6. Choose Larger Solution: The larger solution is f=3+11f = -3 + \sqrt{11}, which corresponds to answer choice (B).

More problems from Solve multi-variable equations