Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for all values of 
x in simplest form.

5-4|2x-3|=-11
Answer: 
x=

Solve for all values of x x in simplest form.\newline542x3=11 5-4|2 x-3|=-11 \newlineAnswer: x= x=

Full solution

Q. Solve for all values of x x in simplest form.\newline542x3=11 5-4|2 x-3|=-11 \newlineAnswer: x= x=
  1. Isolate Absolute Value: Isolate the absolute value expression.\newlineAdd 42x34|2x - 3| to both sides to isolate the absolute value on one side.\newline542x3+42x3=11+42x35 - 4|2x - 3| + 4|2x - 3| = -11 + 4|2x - 3|\newline5+42x3=11+42x35 + 4|2x - 3| = -11 + 4|2x - 3|\newline5+42x3=11+42x35 + 4|2x - 3| = -11 + 4|2x - 3|\newline5=11+42x35 = -11 + 4|2x - 3|
  2. Simplify Equation: Simplify the equation.\newlineSubtract 55 from both sides to get the absolute value by itself.\newline55=11+42x355 - 5 = -11 + 4|2x - 3| - 5\newline0=16+42x30 = -16 + 4|2x - 3|
  3. Add 1616 and Solve: Add 1616 to both sides to solve for the absolute value.\newline0+16=16+16+42x30 + 16 = -16 + 16 + 4|2x - 3|\newline16=42x316 = 4|2x - 3|
  4. Divide and Find Value: Divide both sides by 44 to find the value of the absolute value expression.164=42x34\frac{16}{4} = \frac{4|2x - 3|}{4}4=2x34 = |2x - 3|
  5. Set Up Equations: Set up two equations to solve for xx, since the absolute value of a number can be either positive or negative.2x3=42x - 3 = 4 or 2x3=42x - 3 = -4
  6. Solve for x (11st): Solve the first equation for x.\newline2x3=42x - 3 = 4\newlineAdd 33 to both sides.\newline2x3+3=4+32x - 3 + 3 = 4 + 3\newline2x=72x = 7\newlineDivide both sides by 22.\newline2x2=72\frac{2x}{2} = \frac{7}{2}\newlinex = 72\frac{7}{2}
  7. Solve for x (22nd): Solve the second equation for x.\newline2x3=42x - 3 = -4\newlineAdd 33 to both sides.\newline2x3+3=4+32x - 3 + 3 = -4 + 3\newline2x=12x = -1\newlineDivide both sides by 22.\newline2x2=12\frac{2x}{2} = \frac{-1}{2}\newlinex = 12-\frac{1}{2}

More problems from Solve absolute value equations