Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=9 and 
f(n)=-4f(n-1) then find the value of 
f(4).
Answer:

If f(1)=9 f(1)=9 and f(n)=4f(n1) f(n)=-4 f(n-1) then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=9 f(1)=9 and f(n)=4f(n1) f(n)=-4 f(n-1) then find the value of f(4) f(4) .\newlineAnswer:
  1. Understand Recursive Function: Understand the given recursive function.\newlineThe function f(n)f(n) is defined recursively, meaning that the value of the function at nn depends on the value of the function at n1n-1. We are given that f(1)=9f(1) = 9 and that f(n)=4f(n1)f(n) = -4f(n-1) for any n > 1.
  2. Find f(2)f(2): Find the value of f(2)f(2). Using the recursive formula f(n)=4f(n1)f(n) = -4f(n-1), we substitute nn with 22 to find f(2)f(2). f(2)=4f(21)f(2) = -4f(2-1) f(2)=4f(1)f(2) = -4f(1) Since we know f(1)=9f(1) = 9, we can substitute that value in. f(2)=4×9f(2) = -4 \times 9 f(2)f(2)00
  3. Find f(3)f(3): Find the value of f(3)f(3). Using the recursive formula again, we substitute nn with 33 to find f(3)f(3). f(3)=4f(31)f(3) = -4f(3-1) f(3)=4f(2)f(3) = -4f(2) We found f(2)=36f(2) = -36 in the previous step, so we substitute that value in. f(3)=4×(36)f(3) = -4 \times (-36) f(3)=144f(3) = 144
  4. Find f(4)f(4): Find the value of f(4)f(4). Using the recursive formula one last time, we substitute nn with 44 to find f(4)f(4). f(4)=4f(41)f(4) = -4f(4-1) f(4)=4f(3)f(4) = -4f(3) We found f(3)=144f(3) = 144 in the previous step, so we substitute that value in. f(4)=4×144f(4) = -4 \times 144 f(4)=576f(4) = -576

More problems from Write and solve direct variation equations