Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=9 and 
a_(n)=na_(n-1)-2 then find the value of 
a_(5).
Answer:

If a1=9 a_{1}=9 and an=nan12 a_{n}=n a_{n-1}-2 then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=9 a_{1}=9 and an=nan12 a_{n}=n a_{n-1}-2 then find the value of a5 a_{5} .\newlineAnswer:
  1. Understand Formula and Condition: Understand the recursive formula and the initial condition.\newlineThe recursive formula given is an=nan12a_{n}=na_{n-1}-2, which means each term is nn times the previous term minus 22. The initial condition is a1=9a_{1}=9.
  2. Find a2a_{2}: Find the value of a2a_{2} using the recursive formula.\newlineSubstitute n=2n=2 and a1=9a_{1}=9 into the formula.\newlinea2=2×a12a_{2} = 2 \times a_{1} - 2\newlinea2=2×92a_{2} = 2 \times 9 - 2\newlinea2=182a_{2} = 18 - 2\newlinea2=16a_{2} = 16
  3. Find a3a_{3}: Find the value of a3a_{3} using the recursive formula.\newlineSubstitute n=3n=3 and a2=16a_{2}=16 into the formula.\newlinea3=3×a22a_{3} = 3 \times a_{2} - 2\newlinea3=3×162a_{3} = 3 \times 16 - 2\newlinea3=482a_{3} = 48 - 2\newlinea3=46a_{3} = 46
  4. Find a4a_{4}: Find the value of a4a_{4} using the recursive formula.\newlineSubstitute n=4n=4 and a3=46a_{3}=46 into the formula.\newlinea4=4×a32a_{4} = 4 \times a_{3} - 2\newlinea4=4×462a_{4} = 4 \times 46 - 2\newlinea4=1842a_{4} = 184 - 2\newlinea4=182a_{4} = 182
  5. Find a5a_{5}: Find the value of a5a_{5} using the recursive formula.\newlineSubstitute n=5n=5 and a4=182a_{4}=182 into the formula.\newlinea5=5×a42a_{5} = 5 \times a_{4} - 2\newlinea5=5×1822a_{5} = 5 \times 182 - 2\newlinea5=9102a_{5} = 910 - 2\newlinea5=908a_{5} = 908

More problems from Write and solve direct variation equations