Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the average value of the function 
f(x)=(2)/(x-11) from 
x=2 to 
x=8. Express your answer as a constant times 
ln 3.
Answer: 
◻ln 3

Find the average value of the function f(x)=2x11 f(x)=\frac{2}{x-11} from x=2 x=2 to x=8 x=8 . Express your answer as a constant times ln3 \ln 3 .\newlineAnswer: ln3\square \ln 3

Full solution

Q. Find the average value of the function f(x)=2x11 f(x)=\frac{2}{x-11} from x=2 x=2 to x=8 x=8 . Express your answer as a constant times ln3 \ln 3 .\newlineAnswer: ln3\square \ln 3
  1. Understand the concept: Understand the concept of the average value of a function.\newlineThe average value of a function f(x)f(x) on the interval [a,b][a, b] is given by the formula:\newlineAverage value = 1(ba)abf(x)dx\frac{1}{(b-a)} \int_{a}^{b} f(x) \, dx\newlineHere, a=2a = 2, b=8b = 8, and f(x)=2(x11)f(x) = \frac{2}{(x-11)}.
  2. Set up the integral: Set up the integral to find the average value.\newlineAverage value = (1/(82))×282(x11)dx(1/(8-2)) \times \int_{2}^{8} \frac{2}{(x-11)} \,dx\newlineSimplify the coefficient (1/(82))(1/(8-2)):\newlineAverage value = (1/6)×282(x11)dx(1/6) \times \int_{2}^{8} \frac{2}{(x-11)} \,dx
  3. Calculate the integral: Calculate the integral.\newlineThe integral of 2x11\frac{2}{x-11} with respect to xx is 2lnx112 \cdot \ln|x-11|.\newlineSo, we need to evaluate this from x=2x=2 to x=8x=8.\newline282x11dx=[2lnx11]28\int_{2}^{8} \frac{2}{x-11} \, dx = [2 \cdot \ln|x-11|]_{2}^{8}
  4. Evaluate at bounds: Evaluate the integral at the bounds and subtract.\newlinePlug in the upper bound x=8x=8:\newline2ln811=2ln32 \cdot \ln|8-11| = 2 \cdot \ln|-3|\newlineSince ln3=ln(3)\ln|-3| = \ln(3) (because ln\ln of an absolute value is the same as ln\ln of the positive value), we have:\newline2ln(3)2 \cdot \ln(3)\newlineNow plug in the lower bound x=2x=2:\newline2ln211=2ln9=2ln(9)2 \cdot \ln|2-11| = 2 \cdot \ln|-9| = 2 \cdot \ln(9)\newlineSince ln(9)=2ln(3)\ln(9) = 2 \cdot \ln(3) (because 99 is 2ln811=2ln32 \cdot \ln|8-11| = 2 \cdot \ln|-3|00), we have:\newline2ln811=2ln32 \cdot \ln|8-11| = 2 \cdot \ln|-3|11\newlineNow subtract the two results:\newline2ln811=2ln32 \cdot \ln|8-11| = 2 \cdot \ln|-3|22
  5. Multiply by coefficient: Multiply by the coefficient to find the average value.\newlineAverage value = (16)×(2×ln(3))(\frac{1}{6}) \times (-2 \times \ln(3))\newlineSimplify the expression:\newlineAverage value = 13×ln(3)-\frac{1}{3} \times \ln(3)

More problems from Write and solve direct variation equations