Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=4 and 
a_(n)=5a_(n-1)-n then find the value of 
a_(5).
Answer:

If a1=4 a_{1}=4 and an=5an1n a_{n}=5 a_{n-1}-n then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=4 a_{1}=4 and an=5an1n a_{n}=5 a_{n-1}-n then find the value of a5 a_{5} .\newlineAnswer:
  1. Identify Given Sequence: Identify the given sequence and the recursive formula.\newlineWe are given the first term of the sequence, a1=4a_{1}=4, and the recursive formula an=5an1na_{n}=5a_{n-1}-n, which tells us how to find any term in the sequence based on the previous term.
  2. Find Second Term: Find the second term of the sequence using the recursive formula.\newlineTo find a2a_{2}, we use the formula with n=2n=2:\newlinea2=5a212a_{2} = 5a_{2-1} - 2\newlinea2=5a12a_{2} = 5a_{1} - 2\newlinea2=5×42a_{2} = 5\times 4 - 2\newlinea2=202a_{2} = 20 - 2\newlinea2=18a_{2} = 18
  3. Find Third Term: Find the third term of the sequence using the recursive formula.\newlineTo find a3a_{3}, we use the formula with n=3n=3:\newlinea3=5a313a_{3} = 5a_{3-1} - 3\newlinea3=5a23a_{3} = 5a_{2} - 3\newlinea3=5×183a_{3} = 5\times 18 - 3\newlinea3=903a_{3} = 90 - 3\newlinea3=87a_{3} = 87
  4. Find Fourth Term: Find the fourth term of the sequence using the recursive formula.\newlineTo find a4a_{4}, we use the formula with n=4n=4:\newlinea4=5a414a_{4} = 5a_{4-1} - 4\newlinea4=5a34a_{4} = 5a_{3} - 4\newlinea4=5×874a_{4} = 5\times87 - 4\newlinea4=4354a_{4} = 435 - 4\newline$a_{\(4\)} = \(431\)
  5. Find Fifth Term: Find the fifth term of the sequence using the recursive formula.\(\newline\)To find \(a_{5}\), we use the formula with \(n=5\):\(\newline\)\(a_{5} = 5a_{5-1} - 5\)\(\newline\)\(a_{5} = 5a_{4} - 5\)\(\newline\)\(a_{5} = 5\times431 - 5\)\(\newline\)\(a_{5} = 2155 - 5\)\(\newline\)\(a_{5} = 2150\)

More problems from Write and solve direct variation equations