Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=1 and 
a_(n)=na_(n-1)+4 then find the value of 
a_(5).
Answer:

If a1=1 a_{1}=1 and an=nan1+4 a_{n}=n a_{n-1}+4 then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=1 a_{1}=1 and an=nan1+4 a_{n}=n a_{n-1}+4 then find the value of a5 a_{5} .\newlineAnswer:
  1. Understand formula and condition: Understand the recursive formula and the initial condition.\newlineThe recursive formula given is an=nan1+4a_{n}=na_{n-1}+4, and the initial condition is a1=1a_{1}=1. This means that each term in the sequence is nn times the previous term plus 44.
  2. Find a2a_{2}: Find the value of a2a_{2} using the recursive formula.\newlineSince a1=1a_{1}=1, we can find a2a_{2} by plugging n=2n=2 into the formula:\newlinea2=2×a1+4a_{2} = 2 \times a_{1} + 4\newlinea2=2×1+4a_{2} = 2 \times 1 + 4\newlinea2=2+4a_{2} = 2 + 4\newlinea2=6a_{2} = 6
  3. Find a3a_{3}: Find the value of a3a_{3} using the recursive formula.\newlineNow that we have a2a_{2}, we can find a3a_{3} by plugging n=3n=3 into the formula:\newlinea3=3×a2+4a_{3} = 3 \times a_{2} + 4\newlinea3=3×6+4a_{3} = 3 \times 6 + 4\newlinea3=18+4a_{3} = 18 + 4\newlinea3=22a_{3} = 22
  4. Find a4a_{4}: Find the value of a4a_{4} using the recursive formula.\newlineWith a3a_{3} found, we can find a4a_{4} by plugging n=4n=4 into the formula:\newlinea4=4×a3+4a_{4} = 4 \times a_{3} + 4\newlinea4=4×22+4a_{4} = 4 \times 22 + 4\newlinea4=88+4a_{4} = 88 + 4\newlinea4=92a_{4} = 92
  5. Find a5a_{5}: Find the value of a5a_{5} using the recursive formula.\newlineFinally, we can find a5a_{5} by plugging n=5n=5 into the formula:\newlinea5=5×a4+4a_{5} = 5 \times a_{4} + 4\newlinea5=5×92+4a_{5} = 5 \times 92 + 4\newlinea5=460+4a_{5} = 460 + 4\newlinea5=464a_{5} = 464

More problems from Write and solve direct variation equations