Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=9 and 
f(n)=3f(n-1)-n then find the value of 
f(3).
Answer:

If f(1)=9 f(1)=9 and f(n)=3f(n1)n f(n)=3 f(n-1)-n then find the value of f(3) f(3) .\newlineAnswer:

Full solution

Q. If f(1)=9 f(1)=9 and f(n)=3f(n1)n f(n)=3 f(n-1)-n then find the value of f(3) f(3) .\newlineAnswer:
  1. Understand the recursive function: Understand the recursive function.\newlineThe function f(n)f(n) is defined recursively, meaning that to find f(n)f(n), we need to know the value of f(n1)f(n-1). We are given that f(1)=9f(1) = 9, and we want to find f(3)f(3).
  2. Find f(2)f(2) using formula: Find the value of f(2)f(2) using the recursive formula.\newlineWe use the recursive formula f(n)=3f(n1)nf(n) = 3f(n-1) - n with n=2n = 2.\newlinef(2)=3f(21)2f(2) = 3f(2-1) - 2\newlinef(2)=3f(1)2f(2) = 3f(1) - 2\newlineSince we know f(1)=9f(1) = 9, we substitute that value in.\newlinef(2)=3(9)2f(2) = 3(9) - 2\newlinef(2)=272f(2) = 27 - 2\newlinef(2)=25f(2) = 25
  3. Find f(3)f(3) using formula: Find the value of f(3)f(3) using the recursive formula.\newlineNow we use the recursive formula again with n=3n = 3.\newlinef(3)=3f(31)3f(3) = 3f(3-1) - 3\newlinef(3)=3f(2)3f(3) = 3f(2) - 3\newlineWe found f(2)=25f(2) = 25 in the previous step, so we substitute that value in.\newlinef(3)=3(25)3f(3) = 3(25) - 3\newlinef(3)=753f(3) = 75 - 3\newlinef(3)=72f(3) = 72

More problems from Write and solve direct variation equations