Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=7 and 
f(n+1)=3f(n)-5 then find the value of 
f(5).
Answer:

If f(1)=7 f(1)=7 and f(n+1)=3f(n)5 f(n+1)=3 f(n)-5 then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=7 f(1)=7 and f(n+1)=3f(n)5 f(n+1)=3 f(n)-5 then find the value of f(5) f(5) .\newlineAnswer:
  1. Understand recursive formula: Understand the recursive formula and initial condition.\newlineThe recursive formula given is f(n+1)=3f(n)5f(n+1)=3f(n)-5, and we know that f(1)=7f(1)=7. This means that to find f(5)f(5), we need to find the values of f(2)f(2), f(3)f(3), and f(4)f(4) first, using the recursive formula.
  2. Find f(2)f(2): Find the value of f(2)f(2). Using the recursive formula, we substitute n=1n=1 to find f(2)f(2). f(2)=3f(1)5f(2) = 3f(1) - 5 f(2)=3(7)5f(2) = 3(7) - 5 f(2)=215f(2) = 21 - 5 f(2)=16f(2) = 16
  3. Find f(3)f(3): Find the value of f(3)f(3). Using the recursive formula, we substitute n=2n=2 to find f(3)f(3). f(3)=3f(2)5f(3) = 3f(2) - 5 f(3)=3(16)5f(3) = 3(16) - 5 f(3)=485f(3) = 48 - 5 f(3)=43f(3) = 43
  4. Find f(4)f(4): Find the value of f(4)f(4). Using the recursive formula, we substitute n=3n=3 to find f(4)f(4). f(4)=3f(3)5f(4) = 3f(3) - 5 f(4)=3(43)5f(4) = 3(43) - 5 f(4)=1295f(4) = 129 - 5 f(4)=124f(4) = 124
  5. Find f(5)f(5): Find the value of f(5)f(5). Using the recursive formula, we substitute n=4n=4 to find f(5)f(5). f(5)=3f(4)5f(5) = 3f(4) - 5 f(5)=3(124)5f(5) = 3(124) - 5 f(5)=3725f(5) = 372 - 5 f(5)=367f(5) = 367

More problems from Write and solve direct variation equations