Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=7 and 
f(n+1)=-3f(n)-4 then find the value of 
f(4)
Answer:

If f(1)=7 f(1)=7 and f(n+1)=3f(n)4 f(n+1)=-3 f(n)-4 then find the value of f(4) f(4) \newlineAnswer:

Full solution

Q. If f(1)=7 f(1)=7 and f(n+1)=3f(n)4 f(n+1)=-3 f(n)-4 then find the value of f(4) f(4) \newlineAnswer:
  1. Find f(2)f(2): Use the given recursive formula to find f(2)f(2). We know that f(1)=7f(1) = 7. The recursive formula is f(n+1)=3f(n)4f(n+1) = -3f(n) - 4. Substitute n=1n = 1 into the formula to find f(2)f(2). f(2)=3f(1)4f(2) = -3f(1) - 4 f(2)=3(7)4f(2) = -3(7) - 4 f(2)=214f(2) = -21 - 4 f(2)=25f(2) = -25
  2. Find f(3)f(3): Use the recursive formula to find f(3)f(3). We now know that f(2)=25f(2) = -25. Substitute n=2n = 2 into the formula to find f(3)f(3). f(3)=3f(2)4f(3) = -3f(2) - 4 f(3)=3(25)4f(3) = -3(-25) - 4 f(3)=754f(3) = 75 - 4 f(3)=71f(3) = 71
  3. Find f(4)f(4): Use the recursive formula to find f(4)f(4). We now know that f(3)=71f(3) = 71. Substitute n=3n = 3 into the formula to find f(4)f(4). f(4)=3f(3)4f(4) = -3f(3) - 4 f(4)=3(71)4f(4) = -3(71) - 4 f(4)=2134f(4) = -213 - 4 f(4)=217f(4) = -217

More problems from Write and solve direct variation equations