Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=5,f(2)=4 and 
f(n)=3f(n-1)-f(n-2) then find the value of 
f(5).
Answer:

If f(1)=5,f(2)=4 f(1)=5, f(2)=4 and f(n)=3f(n1)f(n2) f(n)=3 f(n-1)-f(n-2) then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=5,f(2)=4 f(1)=5, f(2)=4 and f(n)=3f(n1)f(n2) f(n)=3 f(n-1)-f(n-2) then find the value of f(5) f(5) .\newlineAnswer:
  1. Find f(3)f(3): Use the given recursive function and initial conditions to find f(3)f(3). The recursive function is f(n)=3f(n1)f(n2)f(n) = 3f(n-1) - f(n-2). We know f(1)=5f(1) = 5 and f(2)=4f(2) = 4. Calculate f(3)f(3) using the recursive function. f(3)=3f(2)f(1)=3(4)5=125=7f(3) = 3f(2) - f(1) = 3(4) - 5 = 12 - 5 = 7.
  2. Find f(4)f(4): Use the recursive function to find f(4)f(4). We now know f(2)=4f(2) = 4 and f(3)=7f(3) = 7. Calculate f(4)f(4) using the recursive function. f(4)=3f(3)f(2)=3(7)4=214=17f(4) = 3f(3) - f(2) = 3(7) - 4 = 21 - 4 = 17.
  3. Find f(5)f(5): Use the recursive function to find f(5)f(5). We now know f(3)=7f(3) = 7 and f(4)=17f(4) = 17. Calculate f(5)f(5) using the recursive function. f(5)=3f(4)f(3)=3(17)7=517=44f(5) = 3f(4) - f(3) = 3(17) - 7 = 51 - 7 = 44.

More problems from Write and solve direct variation equations